
Arduissimo Datasheet
Document Version 0.1-draft

Editor: Tobias Strauch
Munich, Bavaria

tobias at cloudx dot cc

December 20, 2019

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest
corrections): Tobias Strauch.

This document is released under the Apache License, Version 2.0.

Preface

System Hyper Pipelining: With this project I want to demonstrate a certain digital design
technique called system hyper pipelining (SHP), which creates high performance digital designs.
The project is created to have a working example, which can be used for comparison. Please find
more information on system hyper pipelining (SHP) technology online at http://www.cloudx.cc/
shp.html.

ASIC vs. FPGA: The technique can be used for ASICs and FPGA alike. I’m just using an
FPGA for this project. The hardware is optimized towards the famous low-cost ARTY board from
Xilinx. There is no reason not to use SHP for designs targeting other FPGA devices or silicon
chips.

RISC-V: I use the RISC-V for this project due to its raising popularity. Previous versions are
based on a Cortex-M3 design, for instance. SHP is not limited to processors or particular processor
families.

Dynamic Multi-threading and Virtual Peripherals: One benefit of SHP is its dynamic
multi-threading capability. This project is optimized towards using an SHP-ed 32-bit RISC-V
quad core MP-SoC to support virtual peripherals such as RS232. I2C, SPI, 1-write, CAN, PWM,
.... Nevertheless, I believe that SHP also has a future in HPC, etc.. It is not limited to the
capabilities shown by this particular project.

Arduissimo: For me the classical term Arduino stands for simple and easy microcontroller pro-
gramming. Still, each microcontroller (Atmel, Mirochip, TI, ...) has its own set of peripherals and
a microcontroller specific driver code is needed to use them. In this project, a reasonable set of
virtual peripherals should be fairly easily re-usable. This aspect gave the project its name, the sim-
plification and flexibility of peripheral programming on top of simple microcontroller programming,
Arduissimo. Free the world from a fixed set of peripherals implemented in a fxied hardware!

IDE: The Arduissimo IDE still needs some work and is not released yet. Alternatively eclipse
based Freedo Studio IDE from SiFive can be used. I hope that the community helps me in finding
the right way to handle the hardware beast I created more efficiently. The problem is, that the SHP
programming requires slightly more detailed programming than the processing method used in the
Arduino world offers. There are still stack handling issues for such a simplified but multithreaded
environment.

Future: I would love to see the specific ideas of this very projects somehow realized on an ASIC. I
think the resulting virtual peripheral speeds are fast enough to replace the fixed set of peripherals
on microcontroller families. The programmable realtime unit subsystem (PRU) on some of TI’s

i

http://www.cloudx.cc/shp.html
http://www.cloudx.cc/shp.html

ii Arduissimo v0.1 Datasheet

microcontroller is already an exampe for such a concept.

Contents

Preface i

1 System concept and relevant aspects at a glance 1

2 CFP and open source under the Apache License Version 2.0 3

3 The shortest path to happiness 5

4 Release directory 7

5 The hardware 9

5.1 Clocking and performance . 10

5.2 Reset . 11

5.3 RISC-V, RV32iMC, CUBE-V-RV32iMC-P3C4D16 11

5.4 On-chip memory . 12

5.5 Thread controller (TC) . 12

5.6 Calendar (CA) . 14

5.7 Message Passing (MP) . 15

5.8 GPIO . 16

5.9 UART . 18

6 Implementation and simulation 21

7 Event handling and virtual peripherals 23

iii

iv Arduissimo v0.1 Datasheet

8 Software 25

9 Download bit and hex files to the ARTY board 27

A Register map 31

B Pinning 35

 Core 0

 CUBE-V
 SHP-ed

 RV32iMC

T

C

C

al
en

da
r Prog-ROM

 Data-RAM

M

es
sa

ge
 P

as
si

ng
 (

M
P

)

 UART

G

en
er

al
 P

ur
po

se
 In

pu
t/O

ut
pu

t P
er

ip
he

ra
l (

G
P

IO
)

 Core 1

 CUBE-V
 SHP-ed

 RV32iMC

T

C

C

al
en

da
r Prog-ROM

 Data-RAM

 Core 2

 CUBE-V
 SHP-ed

 RV32iMC

T

C

C

al
en

da
r Prog-ROM

 Data-RAM

 Core 3

 CUBE-V
 SHP-ed

 RV32iMC

T

C

C

al
en

da
r Prog-ROM

 Data-RAM

 FTDI
 (USB)

 GPIO

MP-SoC

620 MIPS

C++
processing

Software
Defined
Protocols

Arduissimo CUBE-V
(RV32iMC)

Figure 1.1: The big picture.

Chapter 1

System concept and relevant aspects
at a glance

For those of you, who don’t want to read the complete doc, so basically all of you, here are the key
aspects of this project:

As already mentioned, the projects is created to demonstrate the benefits of system hyper pipelining

1

2 Arduissimo v0.1 Datasheet

(SHP). We have 4 CUBE-V cores which run RISC-V 32-bit compatible code. Each one has 3
pipeline stages (P3). The complete design runs at 180MHz. This clock generates what we call a
micro-cycle. We applied C-Slow-Retiming http://www.cloudx.cc/csr.html generating 4 copies
of each CUBE-V core (C4). It therefore takes 4 micro-cycles to finish one functional cycle, or in
other words one macro-cycle is equal to 4 micro-cycles. We then apply the final SHP-step, using a
memory depth of 16 lines (D16) to be able run up to 16 threads at the same time on each core in
a time sliced fashion.

The number of active threads can be changed dynamically. When less or equal 4 threads are
executed, then each thread runs at a macro-cycle speed of (180MHz / 4 =) 45 MHz. When more
than 4 threads are active, let’s say n, then each thread runs at a macro-cycle speed of 180MHz /
n. So for n = 10, to make is easy for you, each thread runs at 18 MHz.

A thread can be started by another thread or by a peripheral. There are no interrupts in the sense
that a running program is interrupted, instead a new thread is started without affecting active
threads (except timing-wise when n >= 4, as mentioned before). Only a thread can kill itself.

You can program at which program address a thread is started. So a thread can say, my dear
thread controller, please start a new thread at 0xC0DE. You can also program any peripheral to
start a new thread at a start address of your choice. You can also provide the new thread some
extra information (like a task identification number for instance), which is automatically written
into the link register a0 of the RISC-V register file. For example, in the a0 register the GPIO pin
number is written, when an edge is detected at that given pin number.

Each core has a calendar, which can be seen as a complex timer. So you can program a list of
future events into the calendar, which automatically sorts these events in a timely order and starts
a thread at a programmable address, once the time for that event has come.

The CUBE-V core is based on the RV32IMC ISA, but the FENCE, ECALL and EBREAK instruc-
tions are not implemented. Also no control and system registers (CSR) are implemented.

The CUBE-V core achieves 0,86 IPC (instructions per cycle, here macro-cycle) based on the CH-
Stone testcases. This relative high number comes from the fact, that register values are not only
written into the register file (RF), but also applies already at the output of the RF when needed
in the next cycle, so a RF-writethrough is implemented if you want. With an IPC of 0,86 one core
reaches 155 MIPS at 180 MHz. Therefore 620 MIPS can be reached on the quad core setting that
fits on the selected FPGA board.

The project is served on a bed of Windows project files with some Verilog strings attached.

http://www.cloudx.cc/csr.html

Chapter 2

CFP and open source under the
Apache License Version 2.0

This is the v0.1 version of this project and certainly far from being finished or even bullet proven.

Call for participation: I invite everybody who is interested to share ideas and thoughts about
anything project related on the System Hyper Pipelining Google user forum https://groups.

google.com/forum/#!forum/shp_. In fact, I reach out to you guys to solve some open issues in
the most elegant way (e.g. stack handling in multithreaded environment, etc.).

The project is licensed under the Apache License, Version 2.0

3

https://groups.google.com/forum/#!forum/shp_
https://groups.google.com/forum/#!forum/shp_

4 Arduissimo v0.1 Datasheet

Chapter 3

The shortest path to happiness

Two steps need to be executed to run a demo program after connecting the ARTY board to the
PC:

First, the ”bit” file needs to be downloaded into the FPGA. You can use the stand-alone LAB
tool from Xilinx, or just open the fpga top project by double click on the $project/vivado/f-
pga top/fpga top.xpr file. Select the $project/vivado/bit/fpga top.bit file and download it onto
the FPGA.

Second, one or (multiple) .hex files need to be downloaded, which takes in case of the color demo
program approximately 20 seconds. Go to $project/hw/arty ftdi/work/. When using cygwin just
use ”make colors” and ”make downloadHex”. The results will be reported once the download has
finished. Alternatively use the colors.bat command when executed in the Command Prompt. Here
you will see the download progress directly.

The 4 color LEDS on the ARTY board will blink as if there is no tomorrow. Each core blinks one
LED.

5

6 Arduissimo v0.1 Datasheet

Chapter 4

Release directory

The release on github is structured as follows:

constraints: Pinning constraints for the FPGA on ARTY board.

demo: Demo Freedom Studio software projects. With the project ”colors”, the design can be
checked stand alone without additional hardware on the ARTY board. The other projects are set
up to simulate virtual peripherals.

doc: This PDF document and Latex source for this document.

dut: Verilog files for the complete FPGA design.
dut/mem sim: Memory simulation files. Used for simulation speed-up.
dut/mem syn: Memory synthesis files. Used for synthesis.

ftdi/arty ftdi: Supporting files to download ”hex” files to the ARTY board via the FTDI chip.

sw: C include files for device, drivers, etc.. The file ”device.h” lists the system registers.

testbench: Verilog testbench files.
testbench/testbench P3C4D16.v: Regression on CUBE-V design, incl. CHStone tests.
testbench/testbench quad.v: Runs regression on quad core implementation, testing the core’s
multithreading capabilities and interaction with peripherals.
testbench/testbench top.v: Simulates the complete design, including the UART but without
DCM.

tests: Freedom Studio software projects and C files for simulation and verification.
tests/basicC: Just some very basic C based tests.
tests/chstone: Self-testing CHStone tests to estimate MIPS.
tests/codeGenHex: C file to generate tests on assembler level.
tests/drivers: Freedom Studio software projects to test I2C, PWM, RS232 and SPI drivers.
tests/system: Freedom Studio software projects to test system level features.

vivado: Vivado project directory.
vivado/bit: Precompiled ”bit” file of the design.
vivado/fpga top: Syntheses and simulation project for top level.

7

8 Arduissimo v0.1 Datasheet

vivado/simuate quad: Simulation project on quad-core level.
vivado/simulate cubev: Simulation project on CUBE-V level.

work: Makefile to compile ”elf” file to ”hex” files and to generate assembler test.

Figure 5.1: Overview of the FPGA design.

Chapter 5

The hardware

The hardware consists of 4 cores and some supporting peripherals (see Figure 5.1).

Each core has one CUBE-V processor, program and data memories as well one thread controller
(TC) and one calendar (CA).

The peripherals are one UART (which is connected to the FTDI chip on the ARTY board), one

9

10 Arduissimo v0.1 Datasheet

Register balancing steps
0 20 40 60 80 100 120 140

C
rit

ic
al

 p
at

h
[n

s]

0

1

2

3

4

5

6

7

8

9

10

Reality

Dream

Figure 5.2: Register balancing steps of SHP-ed RV32iMC on Artix-7.

message passing (MP) block and a GPIO block. The cores can communicate with each other using
message passing. They have equal rights to access the GPIO. Only core 0 can communicate with
the UART. The UART (USB interface) is also used to download program (or data) and to readback
the data-RAM of all cores.

5.1 Clocking and performance

The system runs at 180 MHz. A micro-cycle takes therefore 5.55 nsec, a macro-cycle a minimum
of 22.22 nsec. A thread runs at 45 MHz when less or equal than 4 threads are active at a time.
When all 16 threads of a core are active, all threads run at 11.25 MHz.

Arduissimo v0.1 Datasheet 11

For performance evaluation is based on the famous CHStone testcases http:/www.ertl.jp/

chstone/. They are used in the processor and the high level synthesis (HLS) domain in many
papers. I explicitly use the GSM, ASM, Motion, ADCPM, SHA and Blowfish testcase. When
running these testcases stand-alone an IPC (instructions per cycle) of 0,86 is reached, which results
in 155 MIPS (million instructions per second) per core. When projected on the complete system
620 MIPS are reached.

Figure 5.2 shows the performance increase during register balancing. Register balancing is the
process to move the additional registers (which are added to the design during the C-Slow Retiming
step) through the design to achieve the highest possible performance. The goal based on the early
estimations was to reach 3.3 nsec, which would have resulted in a 300MHz micro-cycle performance,
1.2 GHz clock performance overall and 1.05 GIPS (Giga instructions per cycle). Unfortunately, as
Figure 5.2 shows, I run into a virtual place and route barrier at 5.55 nsec. I was way more successful
with this method when doing it on a Thumb-2 based design with a ”longer” critical starting path.

5.2 Reset

After power up or when the external reset button on the ARTY board was active, the complete
design is in reset mode. Each core has its own reset flag. These reset flags can only be deactivated
by the UART/USB interface, by writing the right value to the right address. The same interface
can also activate the individual flags again. Please refer to Section ”Download bit and hex files to
the ARTY board”.

Once the reset of a core is disabled then the initial thread of that core becomes active. This active
thread after reset starts at address 0x0000.

5.3 RISC-V, RV32iMC, CUBE-V-RV32iMC-P3C4D16

The project uses a RV32iMC implementation of the RISC-V. It is called ”CUBE-V”. It does
not support the FENCE, ECALL and EBREAK instructions and it is therefore not fully RV32I
compatible, which I indicate by using the lower case ”i” in RV32iMC.

CUBE-V also does not support the control and status registers ”CSR”.

A CUBE-V has 3 pipeline stages (”P3”).

The complete design runs at 180MHz. This clock generates what we call a micro-cycle.

We applied C-Slow-Retiming generating 4 copies of each CUBE-V core (”C4”). It therefore takes
4 micro-cycles to finish one functional cycle, or in other words one macro-cycle is equal to 4 micro-
cycles.

We then apply the final SHP-step, using a memory depth of 16 lines (”D16”) to be able to run up
to 16 threads at the same time on each core. We define, that a program (also called a thread) is
executed at macro-cycle speed.

http:/www.ertl.jp/chstone/
http:/www.ertl.jp/chstone/

12 Arduissimo v0.1 Datasheet

Figure 5.3: Pipeline stages and register file write-through short cut.

Unlike other high speed RV32 implementations, almost all instructions are executed in one macro-
cycle. The exceptions are:

DIV[U] and REM[U]: 33 macro-cycles (might be optimized)
MULH[[S]U] 64-bit: 2 macro-cycles
Data memory read: 2 macro-cycles
GPIO register read: 8 micro-cycles

A register file (RF) write-through policy is implemented. This means, when a register dependency
is detected, then the register value is not only written into the RF, but also at the output of the
RF, so that the data can be used already in the next cycle (Figure 5.3). There are only a few
exceptions to this rule.

The number of active threads can be changed dynamically. When less or equal 4 threads are
executed, then each thread runs at a macro-cycle speed of (180MHz / 4 =) 45 MHz. When more
than 4 threads are active, let’s say n, then each thread runs at a macro-cycle speed of 180MHz / n.

5.4 On-chip memory

Each RV32iMC core has it own 6144x32 bits (24 KB) of program memory and 1024x32 bits (4 KB)
of data memory. This can certainly be a limitation. In a next version, the number of cores can
be reduced, which leaves more memory to individual cores. The external memory DDR3L on the
ATRY board might be connected in one of the next versions at the cost of at least one CUBE-V.

It should be mentioned, that each thread on a core shares the same memory. So a peripheral driver
code is shared among all virtual peripherals for instance. It is important to know that each thread
also shares the same stack, which can be problematic, unless the stack pointer is taken care of.

5.5 Thread controller (TC)

Each core is supported by an individual thread controller (TC). A thread can be initialized by one
of the sources listed in Table 5.1, which also lists the overall execution priority.

Arduissimo v0.1 Datasheet 13

Source Priority
Write to TC START, TC SAK 6

Calendar 5
GPIO 4
MP 3

UART RX 2
UART TX 1

Thread FIFO 0

Table 5.1: Thread initialization sources and thread priorities.

Figure 5.4: Abstract view of the thread controller mechanism.

A thread is started by writing its program start address to the TC START or TC SAK (TC
start and kill) register. An individual thread ID is automatically applied to a thread when started.
So far the thread ID wasn’t relevant for programming and up to now it cannot be read. There is
no exception called when more than 16 threads are initialized. Instead incoming events are stalled,
until they can be served. Nevertheless, still a deadlock situation can occur when the system is
poorly programmed.

Figure 5.4 shows that once a thread (with a certain thread identification number ”ID” and valid flag
”V”) leaves the hyper-pipelined execution mechanism, it is reinserted into the execution mechanism
again by default. When another thread needs to be initialized at that very cycle (by the CPU or
a peripheral event) or the so-called ID-FIFO contains thread(s) waiting to be executed, then the
thread itself is ”parked” in the ID-FIFO instead. In the case when multiple threads a waiting to
be executed, the thread which has the highest priority listed in Table 5.1 is executed. The priority
scheme is fixed and cannot be modified (as of now). Events are stalled when threads with higher
priorities are served instead.

A thread kills itself by writing to its TC SAK register or by writing (any value) to its TC KILL
register (Table 5.2).

Threads can be initialized by writing into the TC START or TC SAK register the new thread’s
start address (Table 5.2). When a new thread is initialize by hardware this start address must
be programmed ahead of time into the relevant peripheral’s register. An example procedure is

14 Arduissimo v0.1 Datasheet

31 14 13 0

TC START 0x80000000 w don’t care thread start address [14:1]
TC KILL 0x80000004 w don’t care don’t care
TC SAK 0x80000008 w don’t care thread start address [14:1]

18 14

Table 5.2: Registers: TC START, TC KILL, TC SAK.

described in more detail in the ”Event handling and virtual peripherals” Chapter.

5.6 Calendar (CA)

Each SHP-ed RV32iMC core is supported by an individual calendar (CA). The CA is equivalent to
a basic timer but can hold up to 240 entries. It can be written just like any other peripheral and
stores a timely ordered list of future events. The CA can access GPIO registers or it can initiate a
new thread once the time counter reaches the timestamp of the first event in the list.

A CA entry is a combination of a calendar command CA COM and an event time CA ET. The
command register CA COM must be programmed first. It is thread specific, which means that
each thread has its own CA COM register. It cannot be overwritten by another thread.

31 29 28 12 11 8 7 0

CA COM 0x80001000 w command code not used port pin

3 17 4 8
clear bank 000 port number pin[7:0]
set bank 001 port number pin[7:0]

clear output 010 port number pin[7:0]
set output 011 port number pin[7:0]

Table 5.3: Register: CA Commands (CA COM).

31 30 29 14 13 0

CA ET 0x80001004 w command code a0 value [15:0] thread start address [14:1]

2 16 14
no a0 load 10 start address

with a0 load 11 a0 value start address

Table 5.4: Register: CA Event Time (CA ET).

Writing to the CA ET starts a mechanism, which picks up the thread specific CA COM value,
combines it with the CA ET value and inserts this new entry in a timely ordered linked list. If a
second CA ET write follows, the last CA COM entry of that thread is used again. Writing to

Arduissimo v0.1 Datasheet 15

the CA ET takes one cycle for the writing thread, but stalls any other thread which tries to write
to the CA after that, until the event is inserted in the timely ordered linked list.

The user can read the value of the freely running 23-bit wide current timer register CA CT at any
given time (see Table 5.5). A cycle takes (1 / 180 MHz =) 5.55nsec. The timer starts at 0 again
after an overflow. In order to handle the overflow problematic, the following constraint is defined.
The user may only program an event which is 222-1 (= 1f.ffffh = 2.097.151d) cycles ahead of the
current time. At the same time, the user does not need to take care of the overflow and can write a
low 23-bit wide value, which will be considered as an event after the next overflow. This period is
equivalent to 11.6 msec when running at a frequency of 180 MHz. Longer periods must be handled
by software counters and multiple events.

The associated command is issued, once the CA CT timer matches any of the programmed event
time. This command execution takes 5 cycles and is executed immediately. When multiple events
should occur at the same time, they are handled sequentially with 8 cycle delay time. It is therefore
recommended to assign an offset to individual event groups, in order to reduce this late command
execution, in case a very precise timing is required.

31 24 22 0

CA CT 0x80001008 r 0 current time

9 23

Table 5.5: Register: CA Current Time (CA CT).

Another delay of an event execution can occur, when an entry is inserted into the linked list and
the algorithm just checks the very first entry of this list. The command execution is disabled during
these 7 cycles. For the remaining time of the entry insertion period, one match can be handled.

The CA looks back 212-1 (= fffh = 4095d) cycles to catch up with missed matches.

A command can access GPIO registers or can initiate a thread.

A GPIO command can clear and set individual GPIO port directions and output values (see Table
5.3).

A CA can also be programmed to directly start a thread at a programmable thread start address.
It can be defined, whether a data value of 16 bits is copied over into the register file at address 10d
(register name a0) or not (see Table 5.4).

5.7 Message Passing (MP)

The message passing feature is implemented as a simple 32 bit wide data transfer from a transmit-
ting core tx to a receiving core rx. All permutations with tx = 0, 1, 2, 3 and rx = 0, 1, 2, 3 are
valid except for data transfer within a single core. The relevant registers are listed in Table 5.6 and
5.7.

The MP peripheral can transfer data in two modes. Either the receiving data is read when valid,

16 Arduissimo v0.1 Datasheet

or the tranmitting core initiates a thread in the receiving core.

For a data transfer from tx to rx, the transmitting core tx writes the 32-bit wide data to its message
passing out-going register MP OUT [rx]. This data is then transferred to the message passing
in-coming register of the receiving core MP IN [tx]. The transmitting core tx stalls until the
message is read from the message receiving core.

The MP peripheral can be programmed to initiate a thread at the receiving core, once a new
message is valid. To enable this mechanism, bit 14 must be set in the MP COM [rx] register,
and the thread start address must be programmed as well (see Table 5.7). Still, the transmitting
core stalls until the receiving register MP IN [rx] is read.

31 0

MP OUT 0 0x80040000 w send data

MP OUT 1 0x80040004 w send data

MP OUT 2 0x80040008 w send data

MP OUT 3 0x8004000c w send data

MP IN 0 0x80040010 r receive data

MP IN 1 0x80040014 r receive data

MP IN 2 0x80040018 r receive data

MP IN 3 0x8004001c r receive data

Table 5.6: Register: Message passing out and in (MP OUT N, MP IN N).

14 14 13 0

MP COM 0 0x80040020 w thread enable bit thread start address [14:1]

MP COM 1 0x80040024 w thread enable bit thread start address [14:1]

MP COM 2 0x80040028 w thread enable bit thread start address [14:1]

MP COM 3 0x8004002c w thread enable bit thread start address [14:1]

Table 5.7: Register: Message passing communication control (MP COM N).

5.8 GPIO

The GPIO peripheral is accessible by all cores. It supports 14 banks with 8 pins each and therefore
112 pins. Its register set is optimized towards the connector bundles (8-bits) of the ARTY board.
The direction can be set (output) or cleared (input) for each pin using the GPIO N DIR SET or
the GPIO N DIR CLR register respectively (see Table 5.8). N stands for the bank number. The
setting of the bit in the GPIO N OUT SET (GPIO N OUT CLR) register makes an output
pin switch to 3.3V (ground).

The value of each GPIO pin can be read by accessing the GPIO N IN register. The input signal
passes always through a filter first. It uses a 3 bit-wide shift register running at 180MHz. A
majority decoder extracts the actual (filtered) signal value.

Each GPIO pin of the first 9 banks can be programmed to be level (and therefore edge) sensitive.

Arduissimo v0.1 Datasheet 17

offset 31 8 7 0

GPIO N DIR CLR 0x0000 w don’t care pin[7:0]
GPIO N DIR SET 0x0004 w don’t care pin[7:0]
GPIO N OUT CLR 0x0010 w don’t care pin[7:0]
GPIO N OUT SET 0x0014 w don’t care pin[7:0]

GPIO N IN 0x0020 r 0 pin[7:0]
GPIO N LVL0 0x0030 w don’t care pin[7:0]
GPIO N LVL1 0x0034 w don’t care pin[7:0]
GPIO N CAP 0x0040 w don’t care pin[7:0]

24 8

Table 5.8: Registers: GPIO N DIR CLR, GPIO N DIR SET, GPIO N OUT CLR,
GPIO N OUT SET, GPIO N IN, GPIO N LVL0, GPIO N LVL1, GPIO N CAP

Setting a bit in the GPIO N LVL0 (GPIO N LVL1) registers programs the input logic of the
relevant bit to be level sensitive to low (high). The level sensitive logic uses the filtered input signal
only.

Once the relevant signal matches the programmed input level (zero or one) the GPIO starts an
internal event handling mechanism. When the level matches the programmed input level during
programming already, then this event handling mechanism is started immediately. If not, it starts
one cycle after the filtered input signal reaches the programmed level. It can be argued, that this
mechanism is therefore (also) edge sensitive.

One task of the event handling mechanism is to capture the filtered input signal of the neighbor-
ing pin with the next higher index of the same bank. This value is then stored in the readable
GPIO N CAP register at the bit location of the neighboring pin with the next higher index. If
the level sensitive pin is at bit 7 of the bank, then the neighboring pin is bit 0 of the same bank.

Another task of the event handling mechanism is to start a thread at a predefined program address.
A round robin arbiter mechanism takes care, that all events are propagated with the same priority
and that no event is missed due to multiple consecutive events of some other pin(s).

8 cycles after the relevant filtered signal equals the defined level, the GPIO peripheral requests from
the TC to initiate a thread at a programmable start address. (In other terms, 15 cycles (83 nsec)
from an input edge to the first program fetch of the start address, which is very fast, considering
the fact, that a filter and an arbiter is involved). Each core can program its core specific thread
start address into the core specific GPIO EVENT ADD register (see Ttable 5.9). The event is
propagated to only one single core. The core is selected, which was the last one to program the pin
specific GPIO N LVL0 or GPIO N LVL1 registers. Also, all events for one core end up at the
same thread starting address.

31 14 13 0

GPIO EVENT ADD 0x80031000 w don’t care thread start address [14:1]
18 14

Table 5.9: Register: GPIO EVENT ADD

The program needs to know, which input pin started the particular event. For that, the global pin

18 Arduissimo v0.1 Datasheet

index is propagated into the link register 10d (a0) of the core register file. The global pin index
is the result of the bank number multiplier by 8, plus the pin location within the bank. In other
words, it is a unique pin number.

Once an event has been handled and a thread is initialized, the pin specific level sensing mechanism
needs to be reprogrammed. The GPIO EVENT ADD does not need to be reprogrammed.

Due to area limitations of the FPGA, the GPIOs supporting incoming event propagation is scaled
down to 72 pins (first 9 banks). The upper banks are connected to LEDs and switches anyway.

The base address of the GPIO block is 0x80031000.

The address step to the next bank addressing is 0x100.

For more information please see the ”Register map” Chapter.

5.9 UART

The implemented UART is used for communication with the external FTDI USB chip at a fixed
baudrate of 5 MBaud. The system can therefore communicate with a PC (for example) via USB.
The UART peripheral communicates internally only with core 0. Nevertheless, program and data
memories of all cores can be written and data memories of all cores can be read via this PC-link as
well. Please see Chapter ”Download bit and hex files to the ARTY board” for more information.

The UART uses 3 registers for controlling the sending mechanism (UART SEND,
UART SEND STAT, UART TX COM) and 3 registers for the receiving part (UART REC,
UART REC STAT, UART RX COM). They are listed in Table 5.10, 5.11 and 5.12.

Both directions can be executed in normal or advanced mode.

When a byte should be send via the UART to the FTDI chip in normal mode, then the data must
be written into the UART SEND register. When the UART is still busy sending the last byte,
then the thread trying to write to the UART SEND register is stalled until the sending of the
last byte has finished. This allows a simple programming of a thread which serves as DMA engine.
In case the stalling should be reduced, the send busy flag in the UART SEND STAT register
can be polled to check whether the sending block is still active.

The UART can be programmed to initiate a thread (advanced mode), once the sending of the data
has finished. To enable this mechanism, the thread enable bit in the UART TX COM register
must be set and the thread start address must be programmed.

The UART can be configured using the UART RX COM register to handle receiving bytes in
normal mode or advanced mode. In normal mode (Bit 14 in UART RX COM is 0) the received
value can be read using the UART REC register. If the UART REC is not valid or has been
read already, then the reading thread is stalled until the value is valid (again). This allows a simple
programming of a thread which serves as DMA engine. In case the stalling should be reduced, the
receive valid flag in the UART REC STAT register can be polled to check whether a received
byte is valid.

Arduissimo v0.1 Datasheet 19

Once the UART received a serial byte from the FTDI chip and the UART receiving part is set
into advanced mode (Bit 14 in UART RX COM is 1), then a thread is initialized at core 0. The
least significant 14 bits of the UART RX COM determine the start address. The received byte
is valid in register a0 (register 10d) of the register file. The received value can also be read via the
UART REC register in advanced mode as well.

The receive value must be read via the UART REC register or the relevant thread must be
executed (received data is saved in a0), otherwise the data will be overwritten.

31 8 7 0

UART SEND 0x80020000 w don’t care send byte
UART REC 0x80020020 r 0 received byte

24 8

Table 5.10: Register: UART SEND, UART REC

31 1 0 0

UART SEND STAT 0x80020004 w don’t care send busy
UART REC STAT 0x80020024 r 0 receive valid

30 1

Table 5.11: Register: UART SEND STAT, UART REC STAT

31 15 14 14 13 0

UART TX COM 0x80020010 w don’t care thread enable bit thread start address [14:1]
UART RX COM 0x80020030 w don’t care thread enable bit thread start address [14:1]

17 1 14

Table 5.12: Register: UART TX COM, UART RX COM

20 Arduissimo v0.1 Datasheet

Chapter 6

Implementation and simulation

The release comes with an initial Vivado 2019.2 project under Windows. When opening the $pro-
ject/vivado/fpga top/fpga top.xpr project, it can be seen, that the project is not compiled yet.
The project can be compiled by clicking on the ”Generate Bitstream” link. It will roughly take 30
minutes or so. Alternatively, the precompiled ”bit” file $project/bit/fpga top.bit can be used for
downloading.

The project has been developed using version 2017.2. After testing the release using various versions
(2018.2, 2019.2) it turned out, that there are too many variations. 2018.2 gives me an overmapped
(103% LUT) error for unknown reasons and 2019.2 didn’t make the timing at that time. So the
project is released using the latest version 2019.2 and the timing is clean now.

The design hierarchy can be seen in Fig. 6.1. The parameters are stored in MPSOC parameter.
The rest is pretty much self-explaining. The ” syn” memory files are used for synthesis. The
memory files also have a bypass data register implemented to improve the RAMs write-through
capabilities.

The ”clk 100M” module converts the incoming 100 MHz clock into an internal 180 MHz clock.

This Vivado project also has a top level simulation setup ”tb top”. It simulates the complete FPGA
but without the clk 100M module. It tests the UART connectivity, data and program memory write
and read as well as reset functionality. It also downloads a program which writes and reads some
UART data.

There are two additional Vivado simulation projects. One project ”$project/vivado/simula-
tion CUBEV” simulates the CUBE-V core, by executing all instructions and by running some
CHStone tests, the other project ”$project/vivado/simulation quad” tests 4 CUBE-V instantia-
tions at the same time, their individual system features and how they interact with each other or
with the GPIO peripheral.

All simulation so far are self-testing. There are additional demo-tests in the ”simulation quad”
project, which demonstrate the usage of multithreaded drivers.

21

22 Arduissimo v0.1 Datasheet

Figure 6.1: Overview of the design hierarchy.

Chapter 7

Event handling and virtual
peripherals

In a standard microcontroller system, an interrupt interrupts the processing of the CPU, saves
these register file values on the stack, which might be overwritten by the interrupt routine and
continues with the interrupt routine. After that, the stack values are copied back into the relevant
register file locations.

In this project’s environment, an event starts a new thread and does not interrupt any of the
running threads. In this context we denote that as event handling, instead of interrupt handling.

The question is, how do we identify the relevant start address after linking. This is the current
proposal, based on the GPIO peripheral:

void gpio event(unsigned tag, int start time) {
if (start time >= 0) {

GPIO EVENT ADD = (((unsigned)&&gpio event label >> 1) & 0x3fff);
} else
{

gpio event label:
TC SAK = gpio event hash[tag];

}
}

When calling the gpio event function, the address of the gpio even label is stored in the
GPIO EVENT ADD register of the GPIO peripheral. When the GPIO detects a relevant edge, it
starts a thread at GPIO EVENT ADD register, which happens then to be the gpio event label.

A second trick is used here. The GPIO pin number is written in the a0 link register, which is
identical to the ”tag” entry. To cope with it, we have to build a gpio event hash ahead of time.
The line:

TC SAK = gpio event hash[tag];

23

24 Arduissimo v0.1 Datasheet

Figure 7.1: Running 8 SPI master and 8 SPI slave virtual peripherals from one core.

then looks up the start address of the particular pin handler and starts a thread there, while killing
the current thread at the very same cycle.

This is the currently implemented alternative for interrupt handling. If you have any ideas or
suggestions, please let me know.

With this scheme in mind, we can now program virtual peripherals. A protocol is partitioned into
individual timepoints, at which a protocol must be handled by a thread. For the time period, at
which nothing needs to be done, the threads kills itself after it has programed the calendar to wake
up a thread at a certain program location, which then continues with handling the program. Figure
7.1 shows a demo simulation when running 8 SPI master and 8 SPI slave virtual peripherals on a
single CUBE-V core. The bottom line shows the number of active threads, which is 10 at its peek.
This is just one possibility to code virtual peripherals.

The current release contains initial versions of RS232 (115kBaud), I2C (50kHz) and SPI (25kHz)
drivers. This is more of a prove of concept and is optimized to run 16 (15 in case of RS232)
individual virtual peripherals at the same time on one core. The following improvements can be
made in the future:

1) The provided drivers can be code-size and timing optimized.

2) When equal or less than 4 threads (VPs) are running on a core, or when an exact number of
threads (VPs) are running on a core, then the runtime of a thread is predictive, and the VPs could
continuously execute the code (without being interrupted). This leads to higher baudrates.

3) When the design needs to support the master side of the protocol, multiple VPs can be executed
in a parallel or sequential fashion. Parallel could mean for instance to extend the data width of an
SPI to 5 bits to support 5 individual 1-bit SPIs. Sequential execution could mean, that in case the
protocol does not need to be continuously driven, the serving of individual (and different) interfaces
could alter accordingly.

Certainly one of the great benefits of such a software driven protocol is, that many custom ”or
strange” protocols variations are possible.

Figure 8.1: Compiler settings.

Chapter 8

Software

As the project’s name might indicate, the programming of the system can be done using processing
in the Arduino-style. The Arduissimo IDE is not part of this release but it is planned to have this
included in version v0.2.

As of now the system can be programmed using the Freedom Studio framework from SiFive. Figure
8.1 shows the recommended compiler settings.

Each thread on a core shares the same program memory and the same data memory. This is why
the provided examples are compiled as a single program. It is important to know that all threads
potentionally use the same stack, which can be problematic, unless the stack pointer is taken care
of.

In the Freedom Studio projects that come with this release, the project’s name postfix (” 0”, ...,
” 3”) indicate, on which core the code is executed (see Figure 8.2). Compiling the projects always
results in the error message, that ”elf” execution fails. The ”elf” to ”hex” conversion is then done
seperately by executing the relevant Makefile command. The right command in the Makefile copies

25

26 Arduissimo v0.1 Datasheet

Figure 8.2: Project’s postfix indicate individual core.

the relevant ”elf” file into a ”work” directory, and from there it is converted into ”hex”. This
example is self explaining:

gsm 32 :
cd ../tests/chstone/gsm/work ;
cp ../gsm ws rv32imc/gsm/Release/gsm.elf . ;
riscv64-unknown-elf-objdump.exe -S gsm.elf > main.disasm ;
riscv64-unknown-elf-objcopy.exe -j.text -O verilog gsm.elf main.hex ;
riscv64-unknown-elf-objcopy.exe -j.data -O verilog gsm.elf data.hex

In the next chapters, the downloading of a ”hex” file to the ARTY board is discussed.

Chapter 9

Download bit and hex files to the
ARTY board

The release comes with a precompiled ”bit” file ($project/bit/fpga top.bit), which can be used for
downloading via the standalone LAB tool version from Xilinx, or by using the Hardware Manager
in the Vivado GUI.

In order to understand the proposed ”hex” file download process, it is best to look at the two
examples in $project/ftdi/arty ftdi/work/. When using cygwin, ”make colors” and ”make down-
loadHex” can be used to download the colors example ”hex” files. The results will be reported once
the download has finished. Alternatively the colors.bat command can be executed in a Windows
command prompt. Here the downloading progress will be prompted directly.

In this initial version of the Arduissimo project, programming via the UART basically means:

1) to loopback a byte in order to test the USB - FTDI - FPGA(UART) link,
2) to control the reset status of the system,
3) to write to the individual program memories,
4) to write to and to read from the data memories of the individual cores and
5) to communicate with core 0.

As of now, no debugging capabilities are implemented (other than the data memory read feature).

In order to access the system via the UART, a byte or a sequence of bytes has to be written via
the FTDI chip first. The first byte defines the access type:

Byte 0 Access type
0x1X set/clear reset
0x20 loopback
0x30 memory write follows
0x40 memory read follows
0x50 user communication in write direction follows

Table 9.1: Access type resulting from byte 0.

27

28 Arduissimo v0.1 Datasheet

A reset command sets or clears the internal system reset. The 4 LSB of that byte define the reset
flag state of indivial core.

In loopback mode, the next byte is sent back via uart tx out.

When the memory write or memory read option is chosen, the following bytes define the data
stream:

Byte Meaning
1 bit [17:16] of memory start address
2 bit [15:8] of memory start address
3 bit [7:0] of memory start address
4 high byte of access length
5 low byte of access length

Table 9.2: Meaning of bytes 1 through 5.

The program and data memory offsets are as follows (from the UART perspective):

Core/Memory Offset
core 0 0x00000000
core 1 0x00020000
core 2 0x00040000
core 3 0x00060000

program 0x00000000
data 0x00010000

Table 9.3: Meaning of bytes 1 through 5.

When the memory write option is chosen, the user must write the memory content according to
the programmed access length. The received data is automatically replied. The user can use this
feature to verify the transferred data.

In case of the memory readback option, the FPGA will send the requested memory content accord-
ing to the programmed access length directly after the configuration stream has finished.

For setting or clearing reset flags and memory write or read access, the C program $project/ft-
di/arty ftdi/source/downloadHex.c provides the relevant routines to be used for interfacing. The
arguments are :

-srb: Set reset at beginning.
-srb: Set reset at end.
-lb: Loopback test.
-dc: Download to core [0..3] the following ”hex” file.

When no argument is given, the following arguments will be used as default:

downloadHex -srb f -sre 0 -lb -dc 0 main 0.hex -dc 1 main 1.hex -dc 2 main 2.hex -dc 3 main 3.hex

When the user communication in write direction (PC -> FTDI -> FPGA) option is chosen, then
the following bytes qualify the data stream. The user must write the user communication content

Arduissimo v0.1 Datasheet 29

according to the programmed access length.

byte meaning
1 high byte of transfer length
2 low byte of transfer length

[3...n] write stream content

Table 9.4: Meaning of bytes 1 through n.

The user communication in read direction (FPGA -> FTDI -> PC) is initiated and defined by the
program executed on core 0. The USB driver running on the PC must be ready and capable to
handle the upcoming data stream. As of now, no programming example is provided.

30 Arduissimo v0.1 Datasheet

Appendix A

Register map

This section gives an overview of the register map. The same information is provided in the
$project/sw/include/device.h file.

These core specific register maps apply to each core 0,..,3:

Register Name Address

TC START 0x80000000
TC KILL 0x80000004
TC SAK 0x80000008
CA COM 0x80001000
CA ET 0x80001004
CA CT 0x80001008
GPIO EVENT ADD 0x80031000

Table A.1: Core specific registers.

Core 0 can access the UART:

Register Name Address

UART SEND 0x80020000
UART TX COM 0x80020010
UART REC 0x80020020
UART RX COM 0x80020030

Table A.2: UART registers accessable by core 0 only.

31

32 Arduissimo v0.1 Datasheet

The following registers can be accessed by any core related to its identifier:

Register Name Address

MP OUT 0 0x80040000
MP OUT 1 0x80040004
MP OUT 2 0x80040008
MP OUT 3 0x8004000c
MP IN 0 0x80040010
MP IN 1 0x80040014
MP IN 2 0x80040018
MP IN 3 0x8004001c
MP COM 0 0x80040020
MP COM 1 0x80040024
MP COM 2 0x80040028
MP COM 3 0x8004002c

Table A.3: Message passing registers.

Arduissimo v0.1 Datasheet 33

The following GPIO registers can be accessed by any core:

Register Name Address

GPIO 0 DIR CLR 0x80030000
GPIO 0 DIR SET 0x80030004
GPIO 0 OUT CLR 0x80030010
GPIO 0 OUT SET 0x80030014
GPIO 0 IN 0x80030020
GPIO 0 LVL0 0x80030030
GPIO 0 LVL1 0x80030034
GPIO 0 CAP 0x80030040
GPIO 1 DIR CLR 0x80030100
GPIO 1 DIR SET 0x80030104
GPIO 1 OUT CLR 0x80030110
GPIO 1 OUT SET 0x80030114
GPIO 1 IN 0x80030120
GPIO 1 LVL0 0x80030130
GPIO 1 LVL1 0x80030134
GPIO 1 CAP 0x80030140
GPIO 2 DIR CLR 0x80030200
GPIO 2 DIR SET 0x80030204
GPIO 2 OUT CLR 0x80030210
GPIO 2 OUT SET 0x80030214
GPIO 2 IN 0x80030220
GPIO 2 LVL0 0x80030230
GPIO 2 LVL1 0x80030234
GPIO 3 DIR CLR 0x80030300
GPIO 3 DIR SET 0x80030304
GPIO 3 OUT CLR 0x80030310
GPIO 3 OUT SET 0x80030314
GPIO 3 IN 0x80030320
GPIO 3 LVL0 0x80030330
GPIO 3 LVL1 0x80030334
GPIO 4 DIR CLR 0x80030400
GPIO 4 DIR SET 0x80030404
GPIO 4 OUT CLR 0x80030410
GPIO 4 OUT SET 0x80030414
GPIO 4 IN 0x80030420
GPIO 4 LVL0 0x80030430
GPIO 4 LVL1 0x80030434

Table A.4: GPIO registers part I.

34 Arduissimo v0.1 Datasheet

Register Name Address

GPIO 5 DIR CLR 0x80030500
GPIO 5 DIR SET 0x80030504
GPIO 5 OUT CLR 0x80030510
GPIO 5 OUT SET 0x80030514
GPIO 5 IN 0x80030520
GPIO 5 LVL0 0x80030530
GPIO 5 LVL1 0x80030534
GPIO 6 DIR CLR 0x80030600
GPIO 6 DIR SET 0x80030604
GPIO 6 OUT CLR 0x80030610
GPIO 6 OUT SET 0x80030614
GPIO 6 IN 0x80030620
GPIO 6 LVL0 0x80030630
GPIO 6 LVL1 0x80030634
GPIO 7 DIR CLR 0x80030700
GPIO 7 DIR SET 0x80030704
GPIO 7 OUT CLR 0x80030710
GPIO 7 OUT SET 0x80030714
GPIO 7 IN 0x80030720
GPIO 7 LVL0 0x80030730
GPIO 7 LVL1 0x80030734
GPIO 8 DIR CLR 0x80030800
GPIO 8 DIR SET 0x80030804
GPIO 8 OUT CLR 0x80030810
GPIO 8 OUT SET 0x80030814
GPIO 8 IN 0x80030820
GPIO 8 LVL0 0x80030830
GPIO 8 LVL1 0x80030834
GPIO 9 DIR CLR 0x80030900
GPIO 9 DIR SET 0x80030904
GPIO 9 OUT CLR 0x80030910
GPIO 9 OUT SET 0x80030914
GPIO 9 IN 0x80030920
GPIO 10 DIR CLR 0x80030A00
GPIO 10 DIR SET 0x80030A04
GPIO 10 OUT CLR 0x80030A10
GPIO 10 OUT SET 0x80030A14
GPIO 10 IN 0x80030A20
GPIO 11 DIR CLR 0x80030B00
GPIO 11 DIR SET 0x80030B04
GPIO 11 OUT CLR 0x80030B10
GPIO 11 OUT SET 0x80030B14
GPIO 11 IN 0x80030B20
GPIO 12 DIR CLR 0x80030C00
GPIO 12 DIR SET 0x80030C04
GPIO 12 OUT CLR 0x80030C10
GPIO 12 OUT SET 0x80030C14
GPIO 12 IN 0x80030C20
GPIO 13 DIR CLR 0x80030D00
GPIO 13 DIR SET 0x80030D04
GPIO 13 OUT CLR 0x80030D10
GPIO 13 OUT SET 0x80030D14
GPIO 13 IN 0x80030D20

Table A.5: GPIO registers part II.

Appendix B

Pinning

Happy reading!

Pin Number Bank Number Register Bit Board Naming Schematic
Naming

FPGA Pin

0 0 0 JA.1 JA1 G13
1 0 1 JA.2 JA2 B11
2 0 2 JA.3 JA3 A11
3 0 3 JA.4 JA4 D12
4 0 4 JA.7 JA7 D13
5 0 5 JA.8 JA8 B18
6 0 6 JA.9 JA9 A18
7 0 7 JA.10 JA10 K16
8 1 0 JB.1 JB1 P E15
9 1 1 JB.2 JB1 N E16
10 1 2 JB.3 JB2 P D15
11 1 3 JB.4 JB2 N C15
12 1 4 JB.5 JB3 P J17
13 1 5 JB.6 JB3 N J18
14 1 6 JB.7 JB4 P K15
15 1 7 JB.8 JB4 N J15
16 2 0 JC.1 JC1 P U12
17 2 1 JC.2 JC1 N V12
18 2 2 JC.3 JC2 P V10
19 2 3 JC.4 JC2 N V11
20 2 4 JC.5 JC3 P U14
21 2 5 JC.6 JC3 N V14
22 2 6 JC.7 JC4 P T13
23 2 7 JC.8 JC4 N U13

Table B.1: Pinning list part I.

35

36 Arduissimo v0.1 Datasheet

Pin Number Bank Number Register Bit Board Naming Schematic
Naming

FPGA Pin

24 3 0 JD.1 JD1 D4
25 3 1 JD.2 JD2 D3
26 3 2 JD.3 JD3 F4
27 3 3 JD.4 JD4 F3
28 3 4 JD.7 JD7 E2
29 3 5 JD.8 JD8 D2
30 3 6 JD.9 JD9 H2
31 3 7 JD.10 JD10 G2
32 4 0 IOL.1 CK IO0 V15
33 4 1 IOL.2 CK IO26 U11
34 4 2 IOL.3 CK IO1 U16
35 4 3 IOL.4 CK IO27 V16
36 4 4 IOL.5 CK IO2 P14
37 4 5 IOL.6 CK IO28 M13
38 4 6 IOL.7 CK IO3 T11
39 4 7 IOL.8 CK IO29 R10
40 5 0 IOL.9 CK IO4 R12
41 5 1 IOL.10 CK IO30 R11
42 5 2 IOL.11 CK IO5 T14
43 5 3 IOL.12 CK IO31 R13
44 5 4 IOL.13 CK IO6 T15
45 5 5 IOL.14 CK IO32 R15
46 5 6 IOL.15 CK IO7 T16
47 5 7 IOL.16 CK IO33 P15
48 6 0 IOH.1 CK IO8 N15
49 6 1 IOH.2 CK IO34 R16
50 6 2 IOH.3 CK IO9 M16
51 6 3 IOH.4 CK IO35 N16
52 6 4 IOH.5 CK IO10 V17
53 6 5 IOH.6 CK IO36 N14
54 6 6 IOH.7 CK IO11 U18
55 6 7 IOH.8 CK IO37 U17
56 7 0 IOH.9 CK IO12 R17
57 7 1 IOH.10 CK IO38 T18
58 7 2 IOH.11 CK IO13 P17
59 7 3 IOH.12 CK IO39 R18
60 7 4 DDR3 CKE0 CK IOB N5
61 7 5 IOH.14 CK IO40 P18
62 7 6 IOH.15 CK IOA M17
63 7 7 IOH.16 CK IO41 N17

Table B.2: Pinning list part II.

Arduissimo v0.1 Datasheet 37

Pin Number Bank Number Register Bit Board Naming Schematic
Naming

FPGA Pin

64 8 0 A1 CK A0 F5
65 8 1 A2 CK A6 B7
66 8 2 A3 CK A1 D8
67 8 3 A4 CK A7 B6
68 8 4 A5 CK A2 C7
69 8 5 A6 CK A8 E6
70 8 6 A7 CK A3 E7
71 8 7 A8 CK A9 E5
72 9 0 A9 CK A4 D7
73 9 1 A10 CK A10 A4
74 9 2 A11 CK A5 D5
75 9 3 A12 CK A11 A3
76 9 4 SCL CK SCL L18
77 9 5 SCA CK SDA M18

Table B.3: Pinning list part III.

38 Arduissimo v0.1 Datasheet

Pin Number Bank Number Register Bit Board Naming Schematic
Naming

FPGA Pin

78 9 6 SW0 A8
79 9 7 SW1 C11
80 10 0 SW2 C10
81 10 1 SW3 A10
82 10 2 BTN0 D9
83 10 3 BTN1 C9
84 10 4 BTN2 B9
85 10 5 BTN3 B8
86 10 6 LED0 B E1
87 10 7 LED0 R G6
88 11 0 LED0 G F6
89 11 1 LED1 B G4
90 11 2 LED1 R G3
91 11 3 LED1 G J4
92 11 4 LED2 B H4
93 11 5 LED2 R J3
94 11 6 LED2 G J2
95 11 7 LED3 B K2
96 12 0 LED3 R K1
97 12 1 LED3 G H6
98 12 2 LED4 H5
99 12 3 LED5 J5
100 12 4 LED6 T9
101 12 5 LED7 T10
102 12 6 CK MISO G1
103 12 7 CK SCK F1
104 13 0 CK SS C1
105 13 1 CK MOSI H1
106 13 2 QSPI DQ0 K17
107 13 3 QSPI DQ1 K18
108 13 4 QSPI DQ2 L14
109 13 5 QSPI DQ3 M14
110 13 6 QSPI CS L13
111 13 7 QSPI SCK L16

Table B.4: Pinning list part IV.

	Preface
	System concept and relevant aspects at a glance
	CFP and open source under the Apache License Version 2.0
	The shortest path to happiness
	Release directory
	The hardware
	Clocking and performance
	Reset
	RISC-V, RV32iMC, â•œCUBE-V-RV32iMC-P3C4D16â•š
	On-chip memory
	Thread controller (TC)
	Calendar (CA)
	Message Passing (MP)
	GPIO
	UART

	Implementation and simulation
	Event handling and virtual peripherals
	Software
	Download bit and hex files to the ARTY board
	Register map
	Pinning

