
Abstract—This paper shows the usage of C-Slow Retiming
(CSR) in safety critical and low power applications. CSR
generates C copies of a design by reusing the given logic
resources in a time sliced fashion. When all C design copies
are stimulated with the same input values, then all C design
copies should behave the same way and will therefore create
a redundant system. The paper shows that this special
method of using CSR offers great benefits when used in
safety critical and low power applications. Additional
optimization techniques towards reducing register count are
shown and an on-the-fly recovery mechanism is discussed.

Index Terms—C-Slow Retiming, Safety Critical
Application, Low Power Design

I. INTRODUCTION

afety critical applications use redundant designs
and design state comparison techniques to detect
potential design misbehavior. An example is a

motor control circuit, where a malfunction of the design
could generate life threatening conditions. On the other
hand, a full stop and restart of a system is sometimes
costly and should potentially be avoided with a very fast
recovery mechanism.

S

Another application for using redundant designs are the
control systems of satellites. Single event upsets (SEUs)
must be detected before they could endanger costly
missions in the orbit. It is beneficial when the power
consumption of the redundant systems can also be
reduced.

C-Slow Retiming (CSR) provides C copies of a given
design by inserting registers and reusing the
combinatorial logic in a time sliced fashion. It is already
used in the 1960's, for example in the Barrel processors
from the CDC 6000 series. Publications about this
technique have been rare throughout the last decade. This
paper shows a novel approach to use CSR-ed designs
when redundant designs are needed. It concentrates on the
power consumption aspect, an area reduction based on a
register removal technique and it shows an on-the-fly
recovery mechanism.

A. Background

The ever increasing demands for higher performance
and higher throughput of designs have led to various
techniques. Lin et al. present in [1] an efficient retiming
algorithm and in [2] a retiming algorithm for FPGAs is
shown by Singh et al.. Retiming for wire pipelined SoC
buses is discussed by Lin et al. in [3]. Kroening et al.
outline automatic pipelining of designs in [4]. The
pipelining of sequential circuits with wave steering is
shown by Macchiarulo et al. in [5]. Leiserson et al.
introduce the concept of C-Slow Retiming (CSR) in [6].
Bufistov et al. [7] present a formulation as a general
model for retiming and recycling, which also accepts an
interpretation of the CSR problem. Weaver et al. present
the effects of CSR on 3 different benchmarks in [8] and
the post-placements CSR-ing of a microprocessor on an
FPGA [9]. Baumgartner et al. [10] present an abstraction
algorithm for the verification of generalized C-slow
designs. In recent publications, CSR is used to maximize
the throughout-area efficiency in [11] by Su et al. and on
simultaneous multithreading processors in [12] by Akram
et al..

B. Contribution and Paper Organization

To the best of the author's knowledge, power
consumption (P) has not been considered in publications
about C-Slow Retiming (CSR). The same is true for the
aspect of using a CSR-ed design as a C-times redundant
system.

The paper demonstrates how to use CSR for SEU
detection and design state on-the-fly recovery. The
method is then further developed and optimized to reduce
area (FPGA utilization) and the P of the application.
Results of two 32-bit processors on a low-cost FPGA are
given.

Section II outlines the CSR technology. In section III
the P of CSR-ed designs is discussed. A method to detect
single event upsets and how it can be combined with an
on-the-fly recovery mechanism is shown in section IV.
Section V proposes a method to reduce the number of
registers which are used in the standard CSR approach.
The paper finishes with results and a summary in the
sections VI and VII.

Running Identical Threads in C-Slow
Retiming based Designs for Functional

Failure Detection
T. Strauch

II. C-SLOW RETIMING

Fig. 1. a) Simplified design. b) Applying CSR technique.

A. Theory of CSR

Fig. 1a shows the basic structure of a sequential circuit
with its combinatorial logic (CL), inputs (I) and outputs
(O) and original registers (OR). In Fig. 1b, the CL is
sliced into three (C=3) parts, and each original path has
now two (C-1) additional registers. This is the basic idea
behind CSR. It results in C functionally independent
design copies which use the logic in a time sliced fashion.
It shows how different parts of the logic are used during
different cycles. It now takes three micro-cycles to
achieve the same result as in one original cycle. In Fig. 1,
inputs and outputs are valid at the same time slice. The
implemented register sets are called “C-Slow Retiming
Registers”, CRs. They are placed at different C-levels.
Fig. 1b shows one basic rule of CSR. There are only paths
between consecutive CRs and also from the last CRs to
the original register set and from the original register set
to the first CRs.

The maximum frequency of the given design (Fig. 1a)
is defined as Fd and the maximum frequency of a CSR-ed
design (Fig. 1b) as Fcsr, whereas:

Fcsr ~ Fd * C (1)

The individual cycle of a CSR-ed design is called a
micro cycle. By generating C independent copies of the
design, all running – theoretically – at Fd, it can be said
that the system frequency Fsys is equal to Fcsr:

Fsys = Fcsr ~ Fd * C (2)

In theory, this could lead to an unlimited performance
increase. Evidently this cannot be done endlessly and
register insertion becomes inefficient for higher C again.
The results section at the end of this paper shows
examples for that.

When the CSR-ed design is embedded in a certain
system architecture, it is sometimes possible to remove
CRs by pushing them out the inputs/outputs, before
connecting the CSR-ed design with the surrounding logic.

In the remainder of this paper, processors are used to
demonstrate the effectiveness of CSR, but the method is

not limited to processors only. Nevertheless, the word
“thread” is used synonym for the execution of a processor
program or the execution of an algorithm on a digital
design.

B. CSR on RTL

CSR clearly changes the behavior of the design and can
only be fully utilized when the CSR-ed core is embedded
in a new logic environment. This can be done by using a
multiplexer structure (for inputs). Sometimes a direct
connection to registers without a multiplexer structure is
doable as well (outputs). Memories are usually accessed
by adding the thread identifier as MSB to the address bus.

These modifications have a dramatic impact on the
design flow. It is of great advantage to have a solution on
a higher level such as RTL. The CSR-ed version must be
used as a new subdesign in the design and verification
process. A technique has been demonstrated, which
automatically modifies the design to enable CSR on RTL
by Strauch in [13]. The results given in this paper are
based on this technology.

C. Verification of CSR Design Modifications

It is non-trivial to verify the correctness of CSR based
designs. It looks easy on paper, but unless there is no
special tool for that, the task remains critical. To the best
of the author's knowledge, there is no publicly available
tool for this tasks. Alternatively, static timing analysis
(STA) can be used for that. When each C-level gets its
own clock tree, only paths from one C-level to the next
one exist. Additional paths exist from the last C-level to
the original registers and from the original registers to the
first C-level. It can be checked during a stand alone
design level synthesis and STA run, if additional paths
exist, which should not exist. The STA verifies the
correctness of the register insertion process. The
individual clocks can then be connected to a single clock
again.

III. POWER CONSUMPTION OF CSR-ED DESIGNS

A. Overview

It has been demonstrated, that register insertion (or
pipelining) can reduce the power consumption (P) of a
design. For example Lim et al. use a power-aware flip-
flop insertion with shifted-phase clocks in [14]. The
assumption that CSR also reduces the P, because it is
using register insertion is not necessarily true. Empirical
data based on two processors reported in the result section
show, that CSR actually increases the P of a design copy
significantly compared to the original design.

Fig. 2. Relative P of a CSR-ed design (C = 4) during timing
optimization process.

When using CSR, registers have to be inserted in all
existing logic paths, which also includes the feedback
loops of registers. This usually adds the majority of
additional registers. To achieve a reasonable timing, the
CRs must be placed first of all timing-driven before
power-aware register balancing technique can be applied.
Nevertheless, the number of registers, which are added by
CSR is high for large designs and high C's. When using
CSR, the number of resulting registers is less or roughly
C-times higher.

Two (out of many) sources for power consumption (P)
in digital designs are the clock tree activity and the
switching activity of the combinatorial logic, which also
causes glitches in the design. In the conventional CSR
approach, a design is instantiated N-times. Therefore, the
number of resulting registers is N-times higher, but the
clock speed remains the same. In short: “N-times more
registers running at the original speed”. When using
CSR, the number of registers is roughly C-times higher,
but the clock speed must also be C-times higher to
achieve the same performance. In short: “C-times more
registers running at C-times of the original speed”.
This results in a C-times higher P of the clock tree of the
CSR-ed designs compared the one of the alternative
approach to instantiate individual designs (assuming N ==
C). Therefore, CSR only reduces the P when the P
increase due to the higher clock tree activity is less than
the P savings that can be realized with glitch reduction by
register insertion.

The CSR algorithm used in this paper places registers
at the end of each path and then moves the individual CRs
throughout the combinatorial logic until the best timing is
achieved (timing optimization process). Further power
aware register balancing techniques are not applied,
because this paper concentrates on a register removal
technique, which is demonstrated later.

In Fig. 2 the “CSR 4 P” line shows the relative P of one
thread compared to the P when running the thread on the
original core (“1-line”). In case of the “CSR 4 P” line, 4
different threads are executed but only the average P per
thread is used. It starts with 71% P overhead at the
beginning of the timing optimization process. This is due
to the facts, that the signals generate toggling activity

when passing through the additional registers and that the
higher register load (and clock frequency) generate a
higher clock tree P. The P overhead drops from 71% to
45% during the timing optimization process when a better
register distribution throughout the logic – mainly on the
datapath - is reached. It can be argued, that this P
reduction comes from the fact that the number of longer
logic paths is reduced and therefore the probability to
generate power consuming signal glitches is reduced. To
combine this timing driven approach with power aware
optimization techniques (as shown in [14]) is outside the
scope of this paper.

Fig. 2 shows the relative P of the clock tree compared
to the P of the original thread during the timing
optimization process (“CT P”). The relative P per thread
of the clock tree increases due to the rising number of
registers when improving the timing of a CSR-ed design.
The line “CSR 1 P” shows the P of a single thread when
only identical threads are executed. This will be discussed
in the next section.

The power consumed by a CMOS integrated circuit in
the quiescent state (when the circuit is not switching and
inputs are held at static values) is commonly called
leakage power. This current is presumably higher for
larger designs. When CSR is used on an ASIC, it can be
argued, that the smaller CSR-ed design consumes less
leakage power compared to the larger design of the
alternative approach to instantiate individual designs.

B. Using both Clock Edges in CSR

Another special CSR approach is to use inverted clock
edges for every other C-level. This approach makes only
sense when an even number of design slices exists (C = 2,
4, …). The number of resulting design copies will be half
of the design slices C / 2. In this case, the P for each
thread did not change significantly. A group of threads
can then be used for SEU detection, as discussed in the
next section.

C. P when Running Identical Threads

In Fig. 2 it can be seen how the P changes when
applying the CSR algorithm (C = 4) on a given example
design and identical threads are executed (“CSR 1 P”
line). In this case, the average P of a single thread is in the
range of 87% to 77% of the P generated by the same
thread executed on the original design. Here the P of the
clock tree increases due to the higher register count and
the higher clock frequency, but only one thread generates
switching activity, so that the average P of a single thread
is less than the one of the same thread on the original
design. Why it can be useful to execute identical threads
will be explained in the next section.

Fig. 3. Comparing signal values at key registers to detect an
SEU.

Fig. 4. Detecting faulty memory content with (interleaved)
memory access to identical data at different memory locations.

IV. DETECTING A SINGLE EVENT UPSET (SEU) USING CSR

A. Detecting an SEU with Standard CSR

One way to detect a single event upset (SEU) is the
duplication of a design (redundancy) and to compare key
registers and/or outputs. When an SEU occurs, at least
one design runs different and further actions can be taken.
CSR supports this feature when executing (a group of)
identical threads. In Fig. 3, all threads execute the same
algorithm (or program) and use the logic in a time shared
fashion. Therefore only a limited number of threads are
affected when an SEU occurs. Multiple identical threads
are most likely affected differently because each one of
them is in a different design state. When this difference
affects the state of key registers, it can be detected by a
support logic which compares the states of consecutive
threads. A mismatch indicates that threads run differently.

This method was tested on two different processors
using error injection techniques in simulation (as
discussed by Braza et al. in [15]) to verify the behavior.
The comparison logic can also be pipelined so that the
timing of the original circuit is not impacted. Input
multiplexing becomes obsolete when identical threads are
executed.

B. Handling Memories

The proposed method is not limited to processors only.
All kinds of digital designs and subsystems (including the
system bus, peripherals, accelerators, etc.) can be
elements of the CSR modifications. Although the
simplification in Fig. 1 is still valid, it is obvious that
memories are usually duplicated in CSR-ed designs. A
processor's register file will have a C-times larger
memory space than the one of the original design. The
thread identifier is then added as most significant bits
(MSB) to the memory address bus. When applicable,
larger external data or program memories can also be
duplicated, and each C-copy of the design gets exclusive
access to its specific sections. In case of running identical
threads, the thread identifier can also be added as least
significant bits (LSB) to the address bus in order to
support potential memory burst features.

Fig. 5. On-the-fly recovery.

Fig. 6. Design copy propagation.

With the memory duplication, it is guaranteed, that a
faulty memory content will only impact a single design
copy, whereas the remaining design copies are not
affected. Fig. 4. shows, that when an instruction or data
from an external memory reaches the incoming register
with a comparison logic, faulty data or instructions are
detected by the proposed mechanism. Once a thread
behaves differently, it can be recovered by using the
method discussed in the next section, which can also help
to clear spikes from incoming datastreams.

C. Recovery

When an SEU is detected, safety critical designs can
restart or execute predefined software recovery routines.
When using CSR, an on-the-fly recovery is possible. Fig.
5 shows the CSR-ed design enhanced by an SEU
detection circuit. When C >= 3, the SEU detection circuit
uses a majority decoder to detect the failing thread by
comparing the key register values of C identical threads.
This is done every C micro-cycles.

It will be shown in detail, how a modified write enable
sequence - controlled by a finite state machine (FSM) -
then overwrites the specific Rn register associated with
the failing thread. This write control must also be
combined with a specific Rn read sequence to establish an
on-the-fly recovery mechanism.

Fig. 7. Fault detection at R2.

Fig. 8. Fault detection at R1.

Fig. 9. Fault detection at R0.

In Fig. 6 the propagation of the individual design
copies is shown. In cycle 2, CR0 takes over the state of
R2, CR1 the state of CR0 and R0 is update with a new
state values. In cycle 3, CR0 takes over the state of R0
and in cycle 4 the state of R1. R1 takes over the state of
CR1 in cycle 3 and R2 the one of CR1 in cycle 4. This
mechanism is repeated continuously. Every third (C-ed)
cycle (1, 4, 7, ...) the Rn values are compared.

Assuming that in Fig 7, R2 is detected as faulty in
cycle 4 (marked red). This means, that in cycle 2 and
cycle 3 the register could have already been faulty and
that this faulty value might have already been propagated
through the CR0 and CR1 registers. In order to overwrite
that design copy with a valid state, the T2 design state in
cycle 6 is not only copied to R1, but also to R2, which
will then not be overwritten in cycle 7.

Overwriting a failing design state works almost the
same way when the design copy at R1 is detected as
faulty in cycle 4. In that case (Fig. 8), the incoming value
for T3 in cycle 7 is not only copied to R2, but also to R1.
CR0 takes over the value of R0 in cycle 7, and not the one
of R1.

Clearing a faulty R0 state is more tricky (Fig. 9).
Assuming that this case is detected in cycle 4. To solve
that situation, a delay cycle (5) is inserted and the design
state T2 is merged into the CR-line again (CR0 takes over
the values from C2 in two consecutive cycles 5 and 6).
When the next comparison occurs (cycle 8) the copies
will have identical states again.

When signals leave the system or travel from a CSR-ed
design section to a non-CSR-ed design, faulty signal
behavior resulting from a faulty design copy can be
eliminated by using a majority decoder. As already
mentioned, the recovery mechanism can also be used for
incoming datastreams.

It is important to notice, that this recovery mechanism
only uses an additional hold signal for each Rn and one
additional “read” multiplexer. The Rn write mechanism
can easily be combined with a gated clock structure of the
clock tree when implemented on an ASIC.

The logic for the recovery mechanism is pipelined,
because CSR-ed designs tend to be timing critical. It uses
one cycle to do the comparison, and the removal of a
faulty state is executed in one of the following cycles.

The technique has been successfully simulated on RTL
using a simple 1-out-of-3 majority decoder and an error
injection mechanism. The results were always a full
design on-the-fly recovery. The area overhead of this
approach is reported in the result section. This very fast
on-the-fly recovery mechanism is almost impossible to
achieve when using the standard SEU detection concept
of individual redundant design implementations.

Fig. 10. a) Shift Registers generated by Register Feedback Loops and adjacent C-Slow Retiming Registers (CRs). b) CSR-ed design
with SEU detection circuit and a minimal set of C-Slow-Retiming Registers (CRs).

Fig. 11. Design copy propagation.

V. CSR-ED DESIGNS WITH MINIMAL REGISTER COUNT

Fig. 10a shows a design after applying the CSR
method. It is essentially the same schematic as already
shown in Fig. 1b, but this time CRs which are directly
connected (and build shift registers) are singled out. It can
be seen that CSR generates a high number of shift
registers by adding registers to the feedback loop of the
original registers. Additional shift registers are generated
on the paths through the combinatorial logic. The CRs
contribute to the majority of area and P increase.

When identical threads are executed, the number of
shift registers can be reduced by using a modified CSR
algorithm, called “CSR minimal” (CSRmin). Fig. 10b
shows, how the CSR-ed design can be improved to reduce
the number of CRs. When using CSRmin, the outputs of
the Rns drive the combinatorial logic at different C-levels,
so that shift registers generated by consecutive CRs can
be removed by connecting the combinatorial logic with
the relevant Rn. The Rn write mechanism is controlled by
a FSM.

Fig. 11. shows the design copy propagation for multiple
cycles. CR0 is always updated by using R0 and CR1 is
using CR0 and R1. The Rn register are continuously
updated (R0, R1, R2, R0, …) by using CR1 and R2 as the
source. Again, every third (C'd) cycle the register values
can be compared to detect potential design thread
mismatch.

This method does have a positive impact on the overall
register count (area) and the P of the CSR-ed design
running identical threads improves. Empirical data on 2
different processors is shown in the result section.

It is also possible to eliminate only the shift registers
generated by the feedback loop and to update the original
register (OR) every C'd cycle. In this case, the OR does
not have to be duplicated (generating Rns) and the read
mechanism works like in Fig. 3. This approach is not
investigated any further, because this paper concentrates
on SEU detection and possible recovery mechanism.

The CR removal method discussed in this section is
fundamentally different to the CR removal task which is
mentioned in “II. C-Slow Retiming, A. Theory of CSR”.
When running identical threads, internal CRs can be
removed as well, whereas when different threads are used,
only CRs at the input/outputs of the CSR-ed design can
potentially be eliminated.

Not all faulty changes of all registers at any given time
can be detected, when the CSRmin method is enhanced
by a recovery mechanism. When R2 flips its value in
cycle 2, the effort to catch the fault and to recover from it
is impossible. Although most defects can be removed, the
recovery mechanism is not added to CSRmin in this
paper.

TABLE 1. RESULTS FOR ARM3 CORE, PART I

TABLE 2. RESULTS FOR THE OR1200 CORE, PART I

VI. RESULTS

The numbers in this results section are based on two
CPUs. The RTL code for the ARM3 core (“Amber”, 32-
bit RISC processor, 3-stage pipeline, ARM v2a) and the
OR1200 (“OR1000”, 32-bit scalar RISC, 5-stage pipeline,
MMU, DSP capabilities, TLB, instruction and data cache)
can be found at [16]. The designs are implemented on a
Xilinx Spartan-6 LX16 (-2ftg256). The clock is generated
externally.

A tool called “CoreMultiplier” is used in this paper. Its
algorithm is described by Strauch in [13]. The original
RTL codes of the 2 processor designs are taken and the
tool automatically inserts CRs on RTL. This is done
timing-driven. For this work, CoreMultiplier is enhanced
to insert the recovery logic and to remove shift-register
structures where possible.

A. Results using Standard CSR

Table 1 shows the results of a CSR-ed ARM3 core.
When multiplying the functionality by C = 2...5, the
number of registers increases up to 330%. At the same
time, the number of occupied slices remains relatively
stable. This indicates, that the additional registers nicely
fit into the already used slices. In other words, you have 5
times the functionality with just an area overhead of 43%
when using CSR.

The performance increases with each C step. Although
it does not reach the performance (200%, 300%, …,
500%) of the alternative concept by implementing
individual processors (called “A” in the remainder of this
section), it has a reasonably timing of 6.234 ns. This is a
performance increase of up to 293% compared to a single
core implementation (“rel to 1”), but it only reaches 59%
(“rel to A”) of the performance of A. Better results can be
achieved with more advanced technologies like the Virtex
family, as can be seen in [13], and most likely in ASIC
technologies.

When a single core with 825 occupied slices can run at
18.250 ns, the performance per area (PpA) factor can be
calculated to 66,42 kHz/slice (Table 1). It can be seen in
the PpA column, that this factor increases by up to 205%
for C = 5. In other words, when CSR can be used, more
performance can be realized on a given size.
Nevertheless, increasing C becomes less efficient for
higher C.

The P of the original ARM3 core is 22,1 mW, running
at maximum speed (18.250 ns). When instantiating
individual ARM3 processors, the P multiplies
accordingly. It must be distinguished between running the
same program on all available designs or running
different programs.

When running the same program at the maximum
possible speed, the P decreases to 40% compared to A.
This is certainly due to the fact, that the maximum
possible speed is less than the one of A.

Even when the CSR-ed core could be run at the
theoretical possible speed (cycle time = 18.250 ns / C),
the P would only be in the range of 68% to 77% of the A.
The P seams to be relatively constant and independent of
C when running the same program. As can be seen in Fig.
2, the P is relatively independent of the CSR timing
optimization process when moving registers throughout
the combinatorial logic.

The P changes relatively to the P of the A from 113% to
85% when C is increased while running different
programs. When running the design at the theoretical
possible speed (18.250ns / C), the P is around 147% of
the P of A. It turned out that this number is relatively
constant for different Cs. A CSR-ed design uses less
registers than A, but can run (theoretically) C times faster,
which results in a higher P of the clock tree than the one
of A.

C Registers Occupied Slices PpA

1 1280 rel to 1 994 rel to 1 14008 rel to 1 rel to A 71,82 42,4 42,4

2 2741 214% 1254 126% 9080 154% 77% 122% 84,8 43,55 51% 67% 126,50 149% 193%

3 3573 279% 1335 134% 7127 197% 66% 146% 127,2 54,58 43% 65% 163,14 128% 196%

4 3901 305% 1316 132% 6334 221% 55% 167% 169,6 64,18 38% 68% 174,71 103% 186%

5 4210 329% 1361 137% 5973 235% 47% 171% 212 69,61 33% 70% 197,00 93% 198%

Performance [ps] P [mW] P same [mW] P diff [mW]

@ perf. @ max n.a. @ perf. @ max

C Registers Occupied Slices PpA

1 670 rel to 1 825 rel to 1 18250 rel to 1 rel to A 66,42 22,1 22,1

2 1683 251% 1015 123% 11850 154% 77% 125% 44,2 22,79 52% 67% 50,05 113% 147%

3 1768 264% 1018 123% 8917 205% 68% 166% 66,3 35,00 53% 77% 66,72 101% 148%

4 2091 312% 1029 125% 7210 253% 63% 203% 88,4 41,01 46% 73% 81,50 92% 146%

5 2211 330% 1177 143% 6234 293% 59% 205% 110,5 43,91 40% 68% 94,27 85% 146%

Performance [ps] P [mW] P same [mW] P diff [mW]

@ perf. @ max n.a. @ perf. @ max

TABLE 3. RESULTS FOR THE ARM3 CORE, PART II

TABLE 4. RESULTS FOR THE OR1200 CORE, PART II

Fig. 12. Relative Occupied Slices

Similar numbers can be found for the CSR-ed
implementation of the OR1200 core. The relative number
of registers increases to up to 329% (Table 2), whereas
the number of occupied slices only reaches 137% for
C=5. The performance increase is less optimal over an
increasing number of copies. This is due to the already
fast cycle time of the original core and the relatively slow
technology (Spartan 6). Better results can be achieved on
a more advanced technology (Virtex 5), as reported in
[13]. The P of the original core is 42,4 mW (Tables 6).
The P when running the same or different programs and
with increasing numbers of copies is listed as well. When
running the same thread and removing obsolete shift
registers, the area increase is only 11%.

B. Results using CSRmin, SEU Detection and
Recovery

The results for C-Slow Retimed designs using SEU
detection based on the standard CSR or the CSRmin
algorithm are shown in the Table 3 (ARM3) and Table 4
(OR1200). Fig. 12 shows the results of the ARM3
graphically. It can be seen, that the additional registers
needed for a CSR based recovery (Table 3, column 2)
occupy for C = 3 only 76% more area (occupied slices
(OS)) and 208% more OS for C = 5.

The best results in terms of OS can be achieved by
using the CSRmin algorithm. In this case, a triple CSR-ed

Fig. 13. Relative Power Consumption

ARM3 processor can be implemented with no area
overhead (Table 3, column 9). When C = 5, the CSRmin
algorithm only generates 28% overhead compared to the
original design. The alternative concept of implementing
5 individual processors would generate an area overhead
of 400% of the original design.

The results show, that CSR designs can be perfectly
packed into FPGAs. The CSRmin algorithm further
improves the number by removing a majority of CRs. By
doing that, CSRmin can achieve a reasonable better
performance closer to A for C = 2 and C = 3 compared to
CSR. This can be seen in Table 3 and Table 4,
“Performance CSRmin [ps]” column compared to the
same column in the CSR related Table 1 and 2.

In the Tables 1 and 3 as well as in Fig. 13 the P of the
individual CSR solutions is shown. For the 2 empirical
data sets, the P increases dramatically when different
threads are executed (“CSR C”). When running the same
thread, the P per thread is in favor of CSR compared to A.
Best P related results can be achieved with the CSRmin
algorithm. Adding the recovery mechanism increases the
P for the CSR solutions again, but it still below the P of A
for the two testcases.

C

1 1280 rel to 1 994 rel to 1 1280 rel to 1 994 rel to 1 14008 rel to 1 rel to A rel to 1 rel to 1

2 2035 159% 1282 129% 8077 173% 87% 58,51 69%

3 6291 491% 1968 198% 2214 173% 1332 134% 6334 221% 74% 108,12 85% 86,50 68%

4 6349 496% 2097 211% 2522 197% 1451 146% 6334 221% 55% 137,38 81% 111,94 66%

5 6454 504% 2734 275% 2816 220% 1501 151% 5973 235% 47% 167,48 79% 142,04 67%

Register CSRrec OS CSRrec Register CSRmin OS CSRmin Performance CSRmin [ps] P CSRrec [mW] P CSRmin [mW]

@ max @ max

C

1 670 rel to 1 825 rel to 1 670 rel to 1 825 rel to 1 18250 rel to 1 rel to A rel to 1 rel to 1

2 1093 163% 967 117% 9428 194% 97% 23,36 53%

3 2720 406% 1444 175% 1230 184% 824 100% 7425 246% 82% 59,46 90% 41,77 63%

4 2966 443% 1745 212% 1498 224% 969 117% 7337 249% 62% 74,83 85% 52,46 59%

5 3071 458% 1989 241% 1655 247% 1054 128% 6519 280% 56% 87,28 79% 60,24 55%

Register CSRrec OS CSRrec Register CSRmin OS CSRmin Performance CSRmin [ps] P CSRrec [mW] P CSRmin [mW]

@ max @ max

Fig. 14. Relative ASIC Area

C. Projected Results for ASICs

This section projects the results of the FPGA based
synthesis flow on ASICs. This is done by setting the area
ratio of registers and combinatorial logic to 60/40. This
ratio is based on a synthesis run using an ASIC library
and the OR1200. The area of the combinatorial logic is
estimated to be roughly the same and the register count
can be seen in the Tables shown so far.

In Fig. 14 it can be seen, that the CSR, CSRrec and
CSRmin methods decrease the relative ASIC area
compared to A. In case of the CSRmin algorithm, an SEU
can be detected (C = 2) with just 37% ASIC area
overhead of the original design and singled out (C = 3)
with just 50% area overhead.

The CSRrec algorithms adds a considerable amount of
additional registers, which increases the area consumption
of ASICs dramatically, compared to the FPGA solution.
Nevertheless, the CSR-ed design with recovery
mechanism does not generate considerable more area than
A and has even less area on the given ASIC projections.

In terms of P, it can be assumed, that the results are
analog to those of the FPGA results. The registers added
to support the recovery mechanism can use gated clock
trees, which further reduces the P on ASICs. It is also
doable to create a specific library cell with C registers to
further reduce power and area consumption on ASICs.
This library cell can then be enhanced with a comparison
logic and/or an output multiplexer.

VII. SUMMARY

A. Performance

In general it can be said, that an individual thread runs
most likely slower on an CSR-ed design compared to its
execution on the original design. This disadvantage can
be reduced by using more advanced technologies [13].
Nevertheless, CSR improves the performance per area
factor.

B. C-Slow Retiming

On FPGAs, the multithreaded CSR solution needs less
occupied slices, due to the high number of available
registers on FPGAs. It has been shown, that CSR based
register insertion reduces the P (Fig. 2), but the increased

clock tree activity of CSR-ed designs has a grater
negative impact on the P. When running different threads,
each thread consumes roughly 40% more power than the
alternative approach to instantiate individual designs.
Whereas when identical threads are executed, the power
consumption is in favor of CSR, because a thread
consumes 30% less power on an CSR-ed design than on
the original core implementation.

C. C-Slow Retiming Recovery

For CSR an on-the-fly recovery mechanism is shown.
It increases the area and power consumption compared to
the standard CSR solution, but it is still advantageous to
the alternative approach to instantiate individual cores,
where a single cycle recovery is impossible to implement.

D. C-Slow Retiming Reduced

The area and power consumption can be further
improved when the CSRmin technique is used, which
eliminates a majority of the registers inserted by CSR. For
FPGAs, empirical data show that an SEU detection with
C = 2 comes at almost no additional area costs or
additional power consumption and only a minor
performance penalty compared to the original design,
whereas the alternative concepts needs twice the area and
consumes twice the power.

A combined solution of the standard design duplication
method and the CSRmin algorithm can be beneficial. In
this case both designs are enhanced with the CSRmin
method (C = 2) at almost no additional area cost and no
additional P, but it would be easy to identify, which one of
the two designs is faulty.

E. CSR, CSRrec and CSRmin on ASICs

It looks promising to use this method on ASICs and
design implementations, where SEU detection, power
consumption and design area play an important role. The
CSRmin method reduces the area by 25% (C = 2), 50%
(C = 3) or even more for higher C's. The P can be
assumed to be in favor of the proposed methods, as shown
for FPGAs. The reduced area, a reduced Iddq and ASIC
specific features like gated clock trees further reduce the
P. With the proposed CSRrec method a design state
recovery mechanism (C = 3) becomes available with no
additional area costs compared to the alternative
implementation.

F. Comparison to Alternative Concepts

To the best of the author's knowledge, no literature
exists, which provides reasonable data for comparison. To
compare the proposed methods with alternative concepts,
area, power consumption and the behavioral
modifications (multiple design copies) must be
considered at the same time. The results are all compared
to the most obvious alternative to instantiate individual
designs. Most concepts which only target one aspect (like
power reduction in [14]) can still be applied on top of the
method discussed in this paper.

REFERENCES

[1] C. Lin and H. Zhou, “An Efficient Retiming Algorithm Under
Setup and Hold Constraints,” DAC 2006, July 24-28, 2006, San
Francisco, California, USA, pp. 945-950.

[2] D. Singh and S. Brown, “Integrated Retiming and Placement for
Field Programmable Gate Arrays,” FPGA 2002, February 24-26,
2002, Monterey, California, USA, pp. 67-76.

[3] C. Lin and H. Zhou, “Retiming for Wire Pipelining in System-On-
Chip,” ICCAD '03, November 11-13, 2003, San Jose, California,
USA, p 215.

[4] D. Kroening and W. Paul, “Automated Pipeline Design”, DAC
2001, June 18-22, 2001, Las Vegas, Nevada, USA, pp. 810-815.

[5] L. Macchiarulo, S. Shu and M. Marek-Sadowska, “Pipelining
Sequential Circuits with Wave Steering,” IEEE Trans. Computers,
vol. 53, no. 9, pp. 1205-1210, Sep. 2004.

[6] C. Leiserson and J. Saxe, “Retiming Synchronous Circuitry”,
Algorithmica, vol. 6, no. 1, pp. 5-35, 1991.

[7] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar, “A
general model for performance optimization of sequential
systems,” IEEE Inter. Conf. CAD, Nov. 4-8, 2007, San Jose, CA,
USA, pp. 362-369.

[8] N. Weaver and J. Wawrzynek, “The Effects of Datapath Placement
and C-slow Retiming on Three Computational Benchmarks,” Proc.
FCCM 2002, April 24, 2002, Napa, CA, USA, pp. 303-304.

[9] N. Weaver, Y. Markovskiy, Y. Patel and J. Wawrzynek, “ Post-
Placement C-slow Retiming for the Xilinx Virtex FPGA,” FPGA
2003, February 23-25, 2003, Monterey, CA, USA.

[10] J. Baumgartner, A. Tripp, A. Aziz, V. Singhal, and F. Anderson,
“An Abstraction Algorithm for the Verification of Generalized C-
Slow Designs,” CAV 2000, LNCS 1855, pp.5-19, Springer-Verlag
Berlin Heidelberg 2000.

[11] M. Su, L. Zhou, and C. Shi, “Maximizing the Throughput-Are
Efficiency of Fully-Parallel Low-Density Parity-Check Decoding
with C-Slow Retiming and Asynchronous Deep Pipelining,” ICCD
2007, October 7-10, 2007, Lake Tahoe, CA, USA, pp. 636-643.

[12] M. Afram, A. Khan, and M. Sarfaraz, “C-slow Technique vs
Multiprocessor in designing Low Area Customized set Processor
for Embedded Applications,” Intern. Journal of Computer
Applications, vol. 6, no. 7, Dec. 2001.

[13] T. Strauch, “Timing Driven C-slow Retiming on RTL for
MultiCores on FPGAs,” ParaFPGA 2013, September 10-13, 2013,
Munich, Germany. Available:
www.edaptix.com/ParCo2013_Strauch_CSR_RTL.pdf

[14] H. Lim, K. Lee, Y. Cho, and N. Chang, “Flip-Flop Insertion with
Shifted-Phase Clocks for FPGA Power Reduction,” ICCAD 2005,
November 6-10, 2005, San Jose, CA, USA, pp. 335-342.

[15] J. Braza, J. Gracia, S. Blanc, D. Gil, and P. Gil, “Enhancement of
Fault Injection Techniques Based on Modification of VHDL
Code”, IEEE Trans. on VLSI, vol. 16, no. 6, pp. 693 – 706, June
2008

[16] OpenCores, Stockholm, Sweden, 2007, [Online] Available:
www.opencores.org/project

Tobias Strauch received his Diploma (FH) at the
University of applied science (FH) Furtwangen,
Germany in '98. He works for EDAptix in Munich,
Germany. His field of interests are hardware assisted
verification, TLM, C-Slow Retiming, System Hyper
Pipelining, High Level ATPG, FPGA debugging and
wave based data transfer.

http://www.opencores.org/project

