
T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 1

A Novel RTL ATPG Model Based on
Gate Inherent Faults (GIF-PO) of Complex Gates

Tobias Strauch

Abstract—This paper starts with a comprehensive survey on
RTL ATPG. It then proposes a novel RTL ATPG model based
on ”Gate Inherent Faults” (GIF). These GIF are extracted from
each complex gate (adder, case-statement, etc.) of the RTL source
code individually. They are related to the internal logic paths of
a complex gate. They are not related to any net/signal in the RTL
design. It is observed, that when all GIF on RTL are covered
(100%) and the same stimulus is applied, then all gate level
stuck-at faults of the netlist are covered (100%) as well. The
proposed RTL ATPG model is therefore synthesis independent.
This is shown on ITC’99 testcases. The applied semi-automatic
test pattern generation process is based on functional simulation.

Index Terms—Survey on RTL ATPG, high-level test genera-
tion, register transfer level (RTL) test generation, gate inherent
faults

I. INTRODUCTION

Automatic test pattern generation (ATPG) on gate level for
production tests (stuck-at) is well accepted and understood.
Using register transfer level (RTL) descriptions of the design
to generate or support the generation of gate level test sets
has been discussed in various publications over several the
last decades. This paper begins with a comprehensive survey
of publications on the subject of RTL ATPG.

The goal is to reach the highest possible gate level coverage,
preferable 100% stuck-at coverage. One desirable scenario is
to generate a test set, which is generated based on the RTL
source code, and which achieves 100% gate level coverage on
any correlating netlist, independently of the synthesis result. A
post processing optimization of the test set based on a concrete
implementation is acceptable. The author is not aware of such
a published solution.

A methodology is proposed, which is based on a ”Gate
Inherent Faults to Primary Outputs” (GIF-PO) model. RTL
code can be seen as a high level netlist based on complex gates
like adders, case-statements etc. The individual gate inherent
faults for each one of these complex gates can be automatically
extracted. The RTL code achieves 100% RTL coverage, if (and
only if) a test set propagates all GIF to all relevant primary
outputs (registers, design outputs) in order to be captured. It is
observed, that in this case, the resulting netlist achieves 100%
gate level stuck-at coverage, independently of the individual
synthesis result. The test set can then be further reduced based
on a given gate level netlist.

RTL ATPG models and methodologies can be used for
standard, partial and non-scan designs, etc.. They can support
the generation of single capture cycles as well as multiple
capture cycle based test pattern (”sequential ATPG”). The

Manuscript published December 15th, 2016.

pattern generation process can be done solely based on the
RTL design or with the help of functional tests. Test sets can
be generated fully automatically or with user interaction (semi-
automatic, ”semi-ATPG”).

It is outside the scope of this paper to apply the pro-
posed GIF-PO coverage model to all these different kinds
of solutions. This paper concentrates on using the GIF-PO
coverage model on semi-automatic (user interactive) ATPG
based on functional tests. This is done to outline the concept,
how the numbers reported in the result section are generated.
Subsequent work will be required to combine the GIF-PO
coverage model with more sophisticated functional pattern
generation techniques.

This paper is organized as follows. In Section 2 a compre-
hensive survey on RTL ATPG is given. Section 3 introduces
the GIF-PO coverage model. A semi-ATPG framework is
shown in Section 4 that also outlines, how the numbers in
the final result Section are generated.

II. SURVEY ON RTL ATPG

Harris gives a comprehensive overview on RTL ATPG in
2001 [1], in particular on the usage of control/datapath flow
graphs (CDFG). This section gives an overview of the different
RTL fault models for testability analysis on RTL and/or test
pattern generation not mentioned in [1]. Solutions which
propose additional test insertion logic are not considered. The
individual publications are only mentioned once, although
many of them fall into multiple categories. The survey starts
with work that utilizes functional RTL tests in one way or the
other to generate gate level stuck-at tests, because the semi-
ATPG flow used in this paper falls into this category.

A. Related work on functional simulation based RTL ATPG

The following related work can be found regarding the
combination of functional RTL test simulation and gate level
structural coverage. A functional coverage metric to estimate
the gate level fault coverage of functional tests has been
outlined by Patil et al. in [2]. They borrow concepts from
simulation-based design verification by defining fault detection
conditions as coverage objects and monitoring their occur-
rence, also called their hit counts, during RTL simulation.
Fang et al. propose in [3, 4] output deviations as a metric
to grade functional test sequences at the RTL without explicit
fault simulation.

Hobeika et al. establish in [5] the relationship between
existing dark corners in functional verification and hard to
detect stuck-at faults. Based on this relation, they explore the
use of structural test patterns in the verification process and

ar
X

iv
:1

61
2.

05
16

6v
1 

 [
cs

.A
R

] 
 1

5 
D

ec
 2

01
6



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 2

compare the results to well-known verification techniques.
Sanyal et al. show in [6], that their proposed method sig-

nificantly increases the gate level defect coverage of existing
functional test sequences (on RTL) by selecting a small set of
control and observation points.

Mao et al. outline in [7] an RTL fault grading mechanism,
which takes Verilog RTL models and functional verification
patterns as the inputs, and generates a quantitative RTL fault
coverage. It is also able to provide information for test
pattern improvement to increase fault coverage and design
modifications to improve testability at RTL.

Santos et al. [8] propose an RTL based defect oriented (DO)
test generation methodology, for which a high defects coverage
can be derived. It uses RTL fault simulation to identify dark
corners and to guide the identification of partially constrained
test vectors, which may significantly increase the single or
multiple detection of RTL faults in these dark corners. Multiple
RTL fault detection will increase the probability of detection
of defects on the synthesized structure.

Zhang et al. use automatic test instruction generation (ATIG)
based on processor self-testing algorithms and expanded in-
structions to generate sequential test sets for gate level faults
in [9].

An automatic functional test pattern generator on RTL is
used by Ferrandi et al. in [10]. The adopted functional test
pattern generator is based on implicit techniques (e.g. based
on Binary Decision Diagrams) that compare the erroneous
and error-free VHDL descriptions to identify (if possible) a
functional test pattern. Such a test set is then tailored to the
particular gate-level implementation by transforming it into a
specific test sequence, based on the scheduling adopted by the
high-level synthesis.

B. Fault models based on 9-Value algebra

Chaiyakul et al. propose assignment decision diagrams
(ADD) for logic synthesis in [11]. Ghosh et al. enhanced this
modeling technique in [12, 13, 14, 15] by a nine value algebra
for RTL ATPG. Ghosh et al. then improve this method by
using observability-enhanced tag coverage [16]. Lingappan et
al. enhance the ADD based test generation technique by a
satisfiability based approach in [17, 18] and optimize it for
microprocessors in [19].

Obien et al. [20] use ADD based nine value algebra and
combine it with pseudo primary-inputs and pseudo primary-
outputs to generate constrained ATPG on RTL.

C. Control and/or datapath oriented RTL fault models

Lingappan et al. also enhance the ADD based test generation
technique by control-data flow graphs (CDFG) and state tran-
sition sequence analysis in [21, 22]. Further on, the technique
is enhanced by Boolean implications (also known as as the
unsatisfiable segment) in [23, 24].

Chen et al. [25] convert the behavioral description given in
the form of a Control Flow Graph (CFG). During the path
analysis, symbolic implication is used to reduce the number
of temporary variables. After the path analysis, a variable
classification is used to explore the intrinsic controllability and

observability of the circuit.
Gosh et al. propose a technique in [26, 27], that analyzes the

data path and controller of an RTL circuit and extracts a test
control-data flow (TCDF) graph. This graph is then used to
test the circuit hierarchically by symbolically justifying and
propagating precomputed test sets of modules, registers and
multiplexers in the circuit from system inputs and propagating
the output responses to system outputs.

Lee et al. outline in [28] ATPG for microprocessors based
on their behavioral knowledge, which is modeled by structural
data-flow graphs (SDG).

Raik and Ubar propose in [29, 30] that an RTL model
of the control and datapath parts is represented by high-
level (word-level) decision diagrams (DD), whereas the gate-
level descriptions of RTL blocks are given by structurally
synthesized binary decision diagrams. The method proposed
in the paper combines deterministic and simulation-based
techniques for test pattern generation.

Corno et al. propose in [31] a technique, where the RTL
circuit description is automatically analyzed to extract static
structural information, control and data dependencies, and
to group statements in basic-blocks. Then a code coverage
approach is exploited to excite the RT-level assignment single-
bit faults. After excitation, fault effect propagation and obser-
vation are tackled utilizing simulation scripts. In conclusion,
a fault dropping phase is run to optimize the process.

Wada et al. propose in [32] a DFT method to modify RTL
data paths so that a test plan for every module can be generated
with lower complexity. It is based on a multiplexed data path
architecture.

Fallah et al. present in [33] a new hardware description
language (HDL) SAT checking algorithm that works directly
on the HDL model. The primary feature of the algorithm is
a seamless integration of linear-programming techniques for
feasibility checking of arithmetic equations, that govern the
behavior of data-path modules, and SAT checking for logic
equations, that govern the behavior of control modules.

Yin et al. show in [34] how process controlling trees
(PCT) and data dependence graphs (DDG) are automatically
extracted from RTL description to guide a simulation based
ATPG method.

Yadavalli et al. discuss in [35] an automatic test schedul-
ing system for architectures that use separate control- and
datapaths. It provides a system with eleven signal types to
perform test scheduling at the RTL which allows module level
precomputed test sets to be directly used for gate level testing.

D. Fault models based on low level transformation

Dave et. al. propose in [36] to represent a circuit by an
equivalent two-level AND-OR circuit. Their work suggests the
use of stuck type faults in the two-level AND-OR equivalent
of a combinational function as an adequate set of faults for
test generation. Jacob et al. optimize this approach in [37] for
finite state machines (FSM) and sequential tests.

Corno et al adopt in [38] a particular instantiation of the
observability enhanced statement coverage metric. In partic-
ular, single stuck-at bit faults are modeled on all assignment



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 3

targets of the executed statements that respect a defined set of
rules.

E. Fault models based on input/ouput relations

Pomeranz et al. define in [39] a fault coverage metric, called
the PI-PO fault coverage, based on stuck-at faults on primary
inputs of an RTL logic block. It is used to estimate the gate
level stuck-at fault coverage of a test set for this block.

Kang et al. introduce in [40] an input/output transition fault-
coverage metric at the register-transfer. This coverage metric
can be used in evaluating functional tests for high volume
manufacturing as well as in early testability analysis.

F. Fault models based on hierarchical structure

Jervan et al. assess the effectiveness of high-level test
generation with a simple ATPG algorithm in [41], and present
a novel high-level hierarchical test generation (HTG) approach
to improve the results obtained by a pure high-level test
generator.

Safert et al. show in [42, 43] the advantages of exploiting
both the hierarchy in circuit description and the knowledge
concerning the function of so-called highlevel primitives
(HLPs) during ATG. It leads to significant improvements in
implication, unique sensitization, and multiple backtrace, all of
which play a key role in the efficiency of any ATPG system.

Vedula et al. propose in [44] a hierarchical test generation
method by using functional constraint extraction/composition
based on VHDL RTL.

Lee et al. address in [45] both top-down and bottom-up
approaches in hierarchical test generation. It is shown that the
valid control code abstraction and test cube justification tech-
niques are very effective to overcome the architectural level
functional constraint problem and to achieve high efficiency
in test computation.

Makris et al. introduce in [46, 47] a formal mechanism for
capturing test justification and propagation related behavior of
blocks. Based on the identified test translation behavior, an
RTL testability analysis methodology for hierarchical designs
is derived. An algorithm for pinpointing the local-to-global
test translation controllability and observability bottlenecks
is presented. Makris et al. refine the concept of modular
transparency by emphasizing on the channel notion in [48,
49], which is a powerful mechanism that captures modular
transparency in terms of bijection functions defined on variable
bitwidth signal entities.

Kunda et al. present a technique in [50] for test vector
generation based on high-level primitives and a general fault
model. The technique is able to handle circuits in a hierarchical
fashion, and treats the signals at a bit-vector level rather than
at the bit level.

Magdolen et al. show in [51] a TPG system (REGGEN) that
can generate test set for RTL models. The basic TPG technique
on RT-level was extended by fault simulation process and
new proposed simplifying rules for individual operators were
implemented.

G. State machine fault models

Li et al. show in [52] that states of a FSM, or clusters of
states, which are termed behavioral phases in high-level de-
scriptions, can be obtained through the analysis of behavioral
descriptions as well as functional descriptions. Clustering of
circuit states or behavioral phases reduces the complexity of
analysis on state space, which can represent the function of a
circuit more explicitly and refinedly. A refined representation
is used in the test generation algorithm to simplify and speed
up search process of test sequences.

Hosokawa et al. propose in [53, 54] both a fault-independent
test generation method and a fault-dependent test generation
method for state observable FSMs.

Guglielmo et al. [55] propose RTL ATPG that explores
the design under test (DUT) state space by exploiting an
easy-to-traverse extended finite state machine (EFSM). The
ATPG engine relies on learning, back-jumping and constraint
logic programming to deterministically generate test vectors
for traversing all transitions of the extended FSM.

Mirzaei et al. use a hybrid canonical data structure based
on a Horner expansion diagram (HED) in [56] to generate test
patterns from RTL.

Pomeranz et al. propose in [57] a functional fault model
to generate sequential tests with very high gate-level stuck-at
fault coverage. Their goal is to show that a functional fault
model does not have to include fault effect propagation or
observability requirements. Instead, it is possible to define
conditions to be satisfied by a test sequence based only on
the fault free circuit.

Lajolo et al. address the POLIS co-design environment [58],
and developed a fault model that mimics the permanent single
stuck-at fault model while at the behavioral level. In POLIS
the system is represented as a network of interacting Codesign
Finite State Machines (CFSMs). CFSMs extend Finite State
Machines with arithmetic computations without side effects
on transition edges.

H. Considering gate level fault models

Ravi et al. show an RTL to gate level correspondence in [59]
and RTL versus gate level coverage correlation is elaborated
on by Rumplik et al. in [60].

Al-Yamani et al. compare in [61] the test-quality based on
test sets obtained by complex (high-level) gates and test sets
obtained by elementary gates. The paper claims that there is
a significant penalty in test quality for using complex gates
(structural RTL) as fault sites with the single-stuck model.

Rudnick et al. propose in [62] software testing based
techniques at the high level combined with test enhancement
techniques at the gate level by identifying the datapath and
control portions of the description and by using state transition
graphs (STG) for the control machine.

Vinnakota et al. show in [63] how gate-level faults are
translated to functional faults and test generation is performed
at the functional level. The techniques were incorporated into
a multilevel test pattern generation algorithm for sequential
logic circuits.

Pradhu et al. [64] map the gate level stuck-at fault to RTL



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 4

and build an equivalent faulty RTL model. The fault activation
and propagation constraints are captured using control and
data flow graph of RTL as an liner temporal logic (LTL)
property. This LTL property is then negated and given to a
bounded model checker based on a bit-vector satisfiability
module theories (SMT) solver.

Ravi et al. [65] propose a simple two-pass strategy that
couples register-transfer level (RTL) test generation with gate-
level sequential test generation through fault lists. They moti-
vate this approach by showing that faults found hard-to-test by
gate-level sequential test generators are often easily testable at
the RTL. Likewise, modules found symbolically untestable at
the RTL have many of their faults testable at the gate level.
Therefore, a two-pass strategy, which runs a fast RTL test
generator followed by a gate-level sequential test generator on
the remaining untested faults, can leverage off the strengths of
each test generator.

Chen et al. [66] demonstrate a methodology which uses
gate-level and architecture information to improve cover-
age for structural faults. This software based self-testing
methodology uses an automatic test pattern generation tool
to generate the constrained test patterns to effectively test the
combinational fundamental intellectual properties used in the
processor. The approach refers to the RTL code and processor
architecture for the rest of the control and steering logic for
test routine development.

I. RTL ATPG using fault/error injection

Thaker et al. use in [67] stratified fault sampling in RTL
fault simulation to estimate the gate-level fault coverage of
given test patterns. RTL fault modeling and fault-injection
algorithms are developed such that the RTL fault list of a
module can be treated as a representative fault sample of the
collapsed gate-level stuck-at fault set of the module.

Maniatakos et al. analyze in [68] the impact of RTL
and gate level faults on the instruction execution flow of a
microprocessor, for which fault-simulating the entire gate level
model would probably be impractical. Fault simulation is done
using error injection on RTL and gate level.

Camos et al. [69] introduce a general description of abstract
mutation based design error models that can be tailored to
span any coverage measure for microprocessor validation.
They then present a method of effectively using this statistical
information to guide the ATPG efforts.

J. Textual fault models

Hobeika et al. propose in [70, 71] an RTL illegal state
extraction methodology based on code parsing and parsing
expression grammar (PEG). The extracted values help building
functional constraints that are forced during ATPG process in
order to generate pseudo-functional test patterns.

Chen et al. present in [72] a complete behavioral fault
simulation and ATPG system for circuits modeled in VHDL.
Ten different HDL behavioral fault models are selected and
used to generate test patterns through fault simulation.

K. Knowledge based RTL ATPG

Pecenka et al. have developed a method [73] which utilizes
controllability and observability parameters to estimate the
overall circuit testability on RTL. A simple evolutionary algo-
rithm is used for developing a circuit with required properties.
The initial population consisting of P individuals is generated
randomly. New populations are formed using tournament
selections and mutation operators.

Lynch et al. present in [74] an approach for using the RTL
description of a circuit together with artificial intelligence (AI)
concepts in a diagnostic ATPG system for gate level stuck-at
faults. The AI based concepts are implemented using genetic
algorithms and adaptive resonance theory neural network.

Various testability metrics are considered by Corno et al. in
[75, 76], whereas the test pattern generation phase is combined
with genetic algorithms. Their proposed metrics are borrowed
from software testing and are for instance branch coverage,
different values, observation tree and observation token based
metrics.

Vishakantaiah et al. introduce in [77] techniques to automat-
ically generate test knowledge from structural and behavioral
information in the VHDL description of a design by using a
module operation tree.

Pitchumani et al. show in [78] how they use functional
models of VHDL constructs and its correspondence between
a faulty VHDL construct and an equivalent field replaceable
unit. This is used for fault diagnosis by constraint suspension.
Constraint suspension is a way of diagnosing faults by rea-
soning from first principles using knowledge of the structure
and behavior of the circuit.

Santos et al. introduce in [79] an RTL testability metric
called implicit functionality multiple branch (IFMB) metric
that evaluates the exercise of implicit functionality and multi-
ple branch coverage of conditional constructs. It is claimed that
it leads to higher correlation values between the RTL faults
and the realistic faults detection.

Ohtake et al. [80] define novel test knowledge extracted
method from RTL description and propose a method for
test generation of weakly testable data paths using the test
knowledge. The test knowledge estimated by the proposed
heuristic measures can reduce the search space of sequential
ATPG tools effectively.

L. RTL ATPG and TLM

Javaheri et al. [81] use transaction level modeling (TLM)
and communication hardware. They propose a set of high-level
fault models that include faults for data and control parts of a
communication link. They show how the proposed high-level
fault models map into faults at the gate level in communication
hardware.

M. BIST RTL ATPG

Lin et al. [82] show a pseudofunctional-test methodology
that attempts to minimize the overtesting problem of the scan-
based circuits in automatic test pattern generation (ATPG) and
built-in self-test (BIST) test generation approaches. The first



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 5

pattern of a two-pattern test is still delivered by scan in the
test mode but the pattern is generated in such a way that it
does not violate the functional constraints extracted from the
functional logic. The second pattern is then generated in a
functional mode using the functional justification (also called
broadside) test application scheme.

Tsai et al. [83, 84] present two techniques for improving
the test quality of existing scan-based BIST architectures.
They first propose an almost-full-scan BIST solution in which
they identify and remove a small number of scan flip-flops
from the scan chains to achieve a higher FC with shorter test
application time comparing to the full-scan circuit. They then
present a general test application scheme for scan-based BIST
which employs multiple test sessions with a unique number
of capture cycles in each test session.

Santos et al. [85] propose mask-based BIST TPG improve-
ments, namely in two areas: RTL estimation of the test length
to be used for each mask, in order to reach high defects
coverage, and the identification of an optimum mask for each
set of nested RTL conditions.

Berthelot et al describe in [86] a new method for implement-
ing a test-per-clock BIST scheme for operators in datapaths.
The method targets minimal area overhead. It aims at BISTing
datapaths as early as possible in the design flow. The FC to
achieve on datapath operators is a user-given parameter; it is
used to guide the choice of a TPG among all possibilities.
Finally, several types of TPGs/CMPs can be inserted within
the same design for better optimization.

Masuzawa et al. [87] present a new BIST method for RTL
data paths based on single-control testability, a new concept
of testability. The BIST method adopts hierarchical test. Test
pattern generators are placed only on primary inputs and
test patterns are propagated to and fed into each module.
Test responses are similarly propagated to response analyzers
placed only on primary outputs. For the propagation of test
patterns and test responses, paths existing in the data path are
utilized.

Gosh es al. [88] introduce a novel scheme for testing
RTL controller/data paths using BIST. The scheme uses the
controller netlist and the data path of a circuit to extract a test
control/data flow (TCDF) graph. This TCDF is used to derive
a set of symbolic justification and propagation paths (known as
test environment) to test some of the operations and variables
present in it.

N. Miscellaneous

Yogi et al. demonstrate in [89, 90] a new method of RTL
test generation using spectral techniques. Test vectors gener-
ated for RTL faults are analyzed using Hadamard matrices
to extract important features and new vectors are generated
retaining those features.

Karunaratne et al. [91] take the advantage of the vectorized
data paths in structured VLSI circuits and moves data in vector
form. The search consists of a backward transfer process which
resembles a vectorized consistency drive of D-algorithm over
an iterative network in which cell copies are analogous to clock
periods in sequential circuits. Network elements are RTL logic

Fig. 1. Circuit C1 and permissible circuit C2.

TABLE I
COMPLEX GATES IN VHDL/VERILOG

Complex Gates VHDL Verilog

comb not, and, or, xor !, &, |, ˆ, ...
unary &a, |a, ˆa, ...
mux a(i) a[i]
demux a(i) <= a[i] <=
if it then else ...?...:...; if else
case case (sel) when ... case (sel) ...
compare /=, =, <, >, ... !=, =, <, >, ...
math a + b, -, *, ... a + b, -, *, ...
shift shl, shr <<, >>

TABLE II
EXAMPLE CONTINUED I

Y = Y AND B Y = Y XOR B

A B Y GIF A B Y GIF

0 0 0 0 0 0 A1, B1
0 1 0 A1 0 1 1 A2, B2
1 0 0 B1 1 0 1 A3, B3
1 1 1 A2, B2 1 1 0 A4, B4

functions rather than individual gates and data lines may carry
binary values as well as vectors.

III. THE GIF-PO RTL FAULT MODEL

A. A simple example

The proposed RTL model is best explained by using an
example. Fig. 1 shows a simple circuit C1 with x = (a & b) ˆ
c. C2 is functional equivalent to C1 (or permissible function)
with x’ = (a & b & !c) | (!(a & b) & c). C2 can be an alternative
representation, when nets like e = (a & b & !c) or f = (!(a
& b) & c) can be shared with other functions in the digital
circuit.

Each gate in C1 has now a gate specific set of faults defined.
These gate related faults are based on the individual input to
output paths of each gate. The fault definition is given later.

The proposed gate specific fault model makes it possible,
that - based on the given function of C1 - a test set can be
computed, which covers all stuck-at faults of all nets in any
permissible function of C1, as for instance C2.

B. Using more complex gates

RTL languages are based on complex gates. Table I gives
an overview of complex gates in VHDL or Verilog, which
do generate logic during synthesis. Some can be composed
out of less complex gates. A comparator can be build out
of XOR, INV and AND gates. A complex adder gate can



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 6

TABLE III
EXAMPLE CONTINUED II

Circuit C1 Circuit C1 Circuit C2

a b c AND XOR Ti Tii d x net faults Ti e f g x’ net faults Ti

0 0 0 A1, B1 0 0 0 0 0 0
0 0 1 A2, B2 0 1 0 0 1 1
0 1 0 A1 A1, B1 1 1 0 0 a-1, c-1, d-1, x-1 0 0 0 0 a-1, c-1, e-1, g-1, x’-1
0 1 1 A1 A2, B2 2 0 1 0 0 1 1
1 0 0 B1 A1, B1 0 0 0 0 0 0
1 0 1 B1 A2, B2 2 0 1 b-1, c-0, d-1, x-0 0 0 1 1 b-1, c-0, f-1, g-0, x’-0
1 1 0 A2, B2 A3, B3 3 3 1 1 a-0, b-0, c-1, d-0, x-0 1 1 0 1 a-0, b-0, c-1, e-0, x’-0
1 1 1 A2, B2 A4, B4 4 4 1 0 a-0, b-0, c-0, d-0, x-1 0 1 0 0 c-0, e-1, f-0, g-1, x’-1

be replaced by a series of bit-wise adders, which themselves
can be replaced by less complex gates, etc.. The proposed
gate specific fault model can be applied directly on any given
complex gate.

C. The gate inherent fault (GIF)
The proposed RTL model is based on gate inherent faults

(GIF), which are solely related to the different signal propa-
gation paths through a gate. They are not related to specific
stuck-at values of any input or output pins of the gate, and
therfore not related to any net/signal in the RTL source code.

When a path between a register (design input) and another
register (design output) only consists out of a simple assign-
ments, then this assignment has to be considered as a complex
gate and GIF must be allocated for it.

D. The GIF-GO model definition
Under the proposed GIF-GO model, a GIF is described

by a quadruple(gi, go, i, α) where gi is a gate input, go is a
gate output, i is an index and α ∈ {0,1}. The fault (gi, go, i,
α) is detected by a test t that satisfies the following conditions.

1) The test t detects the path fault gi to go with index i
(gi-go-i).

2) The fault free value of output go under t is α.

3) In the presence of the fault gi-go-i, the output value
go = !α.

In other words, t propagates the effects of a gi-go path fault
with index i to the gate output go. The output’s value is α in
the fault free circuit and !α in the presence of the fault.

E. Logic duplication
An important element of RTL synthesis is logic duplication.

Duplicated logic can generate net faults which are not detected
when a test set is used that is based on the GIF-GO model.
Therefore the final RTL fault model needs to consider logic
duplication. A gate is an element of a network of combinatorial
logic. All outputs of this combinatorial logic are called primary
outputs (PO). In case of a sequential netlist, register data inputs
are considered as PO as well.

F. The GIF-PO model definition

Under the proposed GIF-PO model, a GIF is described
by a quintuple(gi, go, i, j, α) where gi is a gate input, go is
a gate output, i is an index, j is a primary output and α ∈
{0,1}. The fault (gi, go, i, j, α) is detected by a test t that
satisfies the following conditions.

1) The test t detects the path fault gi to go with index i
(gi-go-i).

2) The fault free value of primary output j under t is α.

3) In the presence of the fault gi-go-i, the primary output
value j = !α.

In other words, t propagates the effects of a gi-go path fault
with index i to the primary output j. The primary output’s
value is α in the fault free circuit and !α in the presence of
the fault. A single test t can cover multiple GIF.

G. The example continued

The proposed GIF-PO model is now applied on the given
example. Table II lists the GIF for an AND and an XOR gate
(Fig. 1, C1). The GIF can be simply indexed (1, 2, ..., N), but
in this case, the name of the input pin, to which the GIF is
sensitive to, is added for better readability.

Table III lists all possible combinations of the circuits inputs
a, b and c. The ”Circuit C1” columns show the GIF coverage
for the AND and the XOR gate when the relevant input values
are applied on C1. All GIF have a single primary output x (x’
for C2 respectively).

An algorithm now selects a minimum test set T that covers
all GIF for both gates. Two different test sets (Ti, Tii) are
found. The relevant cycles for each test set are numbered in
the Ti (Tii) column. The ”Circuit C1” column now shows, that
all net faults of C1 are covered by the selected Ti. A net fault
is denoted as net name and stuck-at value, separated by a dash.
Ti can be reduced (by cycle 3 or 4), based on the given netlist
C1. Ti achieves 100% stuck-at coverage on C1 and C2, as the
column ”Circuit C2” shows. Same is true for Tii. Test sets can
also be generated based on C2 and applied on C1 as well.



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 7

TABLE IV
GIF-PO OF A HALF ADDER

A B S GIF-PO(S) ID CO GIF-PO(CO) ID

0 0 0 A1, B1 1 0
0 1 1 A1, B2 2 0 A5 1
1 0 1 A3, B3 3 0 B5 2
1 1 0 A4, B4 4 1 A6, B6 3

TABLE V
GIF-PO OF A 1-BIT FULL ADDER

CI A B S GIF-PO(S) ID CO GIF-PO(CO) ID

0 0 0 0 A1, B1, C1 1 0
0 0 1 1 A1, B2, C2 2 0 A9, C9 1
0 1 0 1 A3, B3, C3 3 0 B9, C10 2
0 1 1 0 A4, B4, C4 4 1 A10, B10 3
1 0 0 0 A5, B5, C5 5 0 A11, B11 4
1 0 1 1 A6, B6, C6 6 1 B12, C11 5
1 1 0 1 A7, B7, C7 7 1 A12, C12 6
1 1 1 0 A8, B8, C8 8 1

H. The GIF-PO model on RTL

Digital designs written on RTL usually contain complex
gates (Table I). The GIF for each complex gate are extracted
and uniquified for each one of their individual primary outputs.
Three more steps need to be done to identify the relevant
GIF-PO of the design. Firstly, constants need to be (forward-)
propagated through the RTL logic. Secondly, open pins need
to be (backward-) propagated through the RTL logic.

In a third step, unreachable GIF-PO must be identified.
There are multiple ways to identify unreachable GIF-PO. One
trivial way is based on the fact, that when all input permu-
tations are tested, then all uncovered GIF-PO are redundant,
as shown in the following multiplier example. Ohtake et al.
propose in [92] a method for unsensitizable path identification
using high level design information. The technique shown in
[92] can be used to identify unreachable GIF-PO. This paper
proposes in the next Section a semi-automatic test pattern
generation flow, which allows the user to mark unreachable
GIF-PO manually. In future work, a fully automated RTL
TPG based on the GIF-PO model will be shown, which
automatically identifies unreachable GIF-PO using modern
formal and functional verification techniques.

I. An adder example

Complex gates can be split into sub gates. For this N-bit
wide adder (N-ADD) example, we apply the GIF-PO model
on a half adder (HA) and on a 1-bit wide full-adder (FA). Table
IV (Table V) shows the GIF-PO of a HA (FA), assuming that
S and CO are PO of the HA (FA). The GIF can alternatively
be grouped and indexed for each PO as shown.

The HA and multiple FA are combined to form the N-ADD.
The resulting PO of the N-ADD are the S(0, , N-1) ports.
The GIF related to the CO outputs of the HA (FA) must be
duplicated for each of the PO, which depends on the internal
CO signals. The CO value of the HA is propagated to the
S(1, , N-1) ports. The CO value of the first FA (bit 1) is

propagated to the S(2, , N-1) ports and so on. The related GIF
are duplicated accordingly.

A 64-bit adder has 12415 GIF-PO. A simple mechanism can
be applied to generate a test set with 100% GIF-PO coverage.
It takes only 193 functional cycles to achieve 100% GIF-PO
coverage and 100% gate level stuck-at coverage of a 64-ADD,
no matter how it is synthesized. These pattern can be further
reduced when a concrete implementation is available.

J. A multiplier example

Fig. 2. Schematic view of a 4-bit wide multiplier using AND gates and three
4-bit wide adders.

A multiplier is used to elaborate on untestable GIF-PO and
untestable stuck-at coverage points. The multiplier can be seen
as a complex gate and the relevant GIF-PO can be defined
for it. Alternatively, we generate the 8-bit wide multiplier (N-
MUL) out of AND gates and seven (N-1) 8-ADD, whereas
each 8-ADD is based on one HA and seven (N-1) FA.This
RTL circuit has 1935 GIF-PO and builds a directed graph
which holds therefore the potential of untestable GIF-PO. A
schematic view of a fragmented 4-bit wide multiplier is shown
in Fig 2.

After applying all input permutations, only 1886 GIF-PO
are covered, the rest are considered as unreachable. Only 906
functional cycles actually contribute to this GIF-PO coverage
(without ordering or optimization). They define one possible
test set T to achieve 100% stuck-at coverage.

An initial gate level representation of the 8-MUL is built out
of AND gates and seven 8-ADD again. This time, the 8-ADD
are generated based on AND, OR and INV gates, whereas each
carry-in for each individual adder bit is generated based on its
very own individual AND-OR tree. This complex AND-OR
representation of an 8-MUL netlist has 3264 stuck-at coverage
points. After applying the test pattern generated on RTL based
on the GIF-PO model (T), only 3236 faults are covered. The
uncovered faults are considered as untestable and the relevant
logic can be seen as redundant.

In the final step, all nets with uncovered faults are either set
to constant 0 or 1, depending on their actual coverage result.
This new netlist is then used to simulate all possible input



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 8

permutations. The modified circuit works correctly and only
521 test cycles (out of the 906 functional cycles of T) are
needed to achieve 100% stuck-at coverage on the gate level
netlist.

K. Difference to related RTL ATPG models

One related RTL fault model is the PI-PO fault model,
shown by Pomeranz et al. in [39]. The PI-PO fault model
is related to the primary inputs and primary outputs of a
given logic block. The Input/Output TRansition (TRIO) model
shown by Kang et al. in [40] proposes similar primary input to
primary output paths and toggling considerations to estimate
the gate level coverage based on RTL. In contrast to both
models, the GIF-PO model considers the gate input and gate
output of each gate (and therefore its gate inherent logic path)
and combines it with the relevant primary outputs of the given
combinatorial network.

It is questionable, if test sets for all path sensitivities
between primary inputs and primary outputs of a complex
netlist can be found within a reasonable time. If so, ATPG
would not be a problem at all. The author of this paper
therefore assumes, that in best case, the PI-PO and TRIO fault
models can only be used to estimate the fault coverage based
on a given pattern set, as explicitly mentioned in [39, 40].

The proposed GIF-PO model allows the calculation of the
maximum GIF-PO number of a given logic directly, by using
a specific number for each individual complex gate and the
number of primary outputs, connected to the individual gate
output. The goal of the GIF-PO model is to generate test
pattern which achieve a 100% GIF-PO coverage.

Another related RTL fault model is described in the work of
Patel et al. in [36]. Their approach involves the generation of a
two-level AND-OR, or OR-AND representation from a circuits
functional description, which then serves as an abstract model
for the generation of test vectors. The work by Jacob et al. [37]
further develops the two-level AND-OR based matrix model
for its usage on FSMs. The disadvantage of the AND-OR
usage is, that the gate-level test generation can be particularly
expensive due to large reconvergent fanouts. The similarity
to the GIF-PO model is, that the fault coverage relies solely
on the functionality of gates and that it is not related to the
individual nets of a given circuit representation. The main
difference is, that the GIF-PO model targets a network of
(complex) gates without a conversion to AND-OR logic and
considers primary outputs (and therefore logic duplication).

The empirical observations is, that a test set with 100% GIF-
PO based coverage achieves 100% stuck-at fault coverage on
any permissible netlist. This observation is unique and has
not been reported before by any other alternative RTL ATPG
model.

IV. A SEMI-ATPG FRAMEWORK

A. Introduction of the used semi-ATPG framework

Fig. 3 gives an overview of the used flow with its individual
steps (a, b, ...). The design under test (DUT) written on RTL is
controlled by an RTL testbench (TB) for simulation. In a first
step (a), the DUT is converted into a cycle accurate model

DUT/
RTL

CAM/
RTL

CAM/
gate COV

GUI

TB/RTL

a)
c) d)

e)

b)g)

FPD

f)

GTD

h)

i)

MTP

Fig. 3. Overview of the used semi-ATPG framework.

(CAM/RTL). The author shows in [93], how such a model
can be generated. The RTL-CAM is enhanced to define and
propagate GIF-PO during simulation.

At the beginning of each simulation run, constant values are
propagated through the design. Unconnected (open) signals
are backward propagated through the design. The CAM/RTL
is stimulated (b) with the same input pattern as the DUT
and dumps (c) the GIF-PO coverage into a coverage database
(COV). The GIF-PO coverage and the relevant RTL source
code can be made visible (d) by using a GUI. This information
is used by the designer / verificationist to define false paths
and unreachable GIF-PO. It is also used to improve (e) the
testcases in order to achieve 100% GIF-PO coverage. The user
defined redundant GIF-PO are stored in the false path database
(FPD) to be reused in the next run (f).

A second CAM is generated based on the gate level netlist
(CAM/gate), which is then stimulated (g) with the same
stimuli as the DUT. During this gate level simulation, a
database is build (h), which contains the general test set
database (GTD) and all necessary information to generate
relevant test pattern on the implemented test structure. This
database is then optimized (i) to generate a minimal test pattern
(MTP) for the final production test.

B. Discussion on the proposed flow

Existing code coverage tools can be enhanced to support
the proposed flow. It guides the user to redundant RTL code,
when GIF-PO coverage points cannot be covered. It helps to
discover redundant logic in the netlist, when 100% stuck-at
coverage of the netlist cannot be reached, although a test set
with 100% GIF-PO coverage is applied.

With this flow, a test set database can be generated before
the design is synthesized. The RTL test sets can also be
provided as a deliverable for an IP. The gate level test set can
be optimized based on the concrete implementation. When a
random pattern generator is used for the initial test sequence,
the database can help to generate a test set for stuck-at faults,
which are hard to cover.

C. Difference to related work

Known code coverage tools in the EDA domain also concen-
trate on complex gates. To the best of the author’s knowledge,
non of them uses the GIF-PO model. They derive for instance
statement, branch, path and expression based coverage points.
It is not defined, that they relate the code coverage points



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 9

TABLE VI
COVERAGE RESULTS

GIF-PO GIF-PO Functional Pattern Coverage Nets Pattern Coverage
redundant cycles RTL GIF-PO netlist stuck-at

64-add (AO) 12415 0 445 193 100% 21054 133 100%
8x8-mult (AO) 1935 49 65535 906 100% 3236 521 100%
b01 368 106 40 34 100% 56 15 100%
b02 184 52 14 12 100% 33 10 100%
b06 573 172 32 24 100% 67 14 100%

cycles
0 5 10 15 20 25 30

co
ve

ra
ge

 [1
00

%
]

0

0.2

0.4

0.6

0.8

1

gate level stuck-at

GIF-PO

GIF-PO vs. gate level stuck-at coverage for b06

Fig. 4. GIF-PO and stuck-at correlation during functional simulation for
b06.

to primary outputs (PO), nor require that a fault must be
propagated to a PO to be considered as covered.

Ferrandi et al. show in [94] functional test generation for
behavioral sequential models. They use statement, branch,
condition and path coverage to achieve high functional cov-
erage and tweak it to get optimized experimental results for
multi-cycle gate level coverage.

To a certain extent, similar flows are also proposed in the
already mentioned work as well. The differences are, that
[2] uses event and hit counts, and [3] output derivations as
the individual coverage matrices. Non of them uses the GIF-
PO model. [7] uses RTL stuck-at fault injection and [10]
uses error injection, whereas the proposed flow in this paper
works without an injection based technique. [5] concentrates
on dark corners of the design, this paper targets 100% GIF-PO
coverage of the complete design.

V. RESULTS

The results are based on the following testcases. A 64-bit
wide adder is built out of a simple ”+” construct on RTL and
the related netlist is based on AND, OR and INV gates. An
8-bit wide multiplier netlist is generated based on AND gates
and fifteen 16-bit adders, which themselves are made out of
AND, OR and INV gates. Redundant logic is removed similar
to the mechanism shown in Section III.J. The b01, b02 and
b06 circuits with their standard netlists of the ITC’99 testcases
are used.

Table VI shows the GIF-PO coverage points for each
testcase and the redundant GIF-PO, which are removed during
the initial constant/open signal propagation and false path

detection phase.
in the next column the amount of functional cycles to

achieve 100% GIF-PO coverage in simulation is listed. The
column ”Pattern (RTL)” lists the number of functional cycles
(T), which add GIF-PO coverage during simulation (without
ordering). All testcases achieve 100% GIF-PO coverage.

Next, the number of nets of the provided netlist is listed.
The column ”Pattern (netlist)” shows the number of cycles
which add stuck-at coverage while simulating T on gate level.
All testcases achieve 100% stuck-at coverage.

Fig. 4 shows the GIF-PO and stuck-at correlation during
testbench driven functional simulation of b06. The flat sections
in both gate level stuck-at and GIF-PO curves show, that
pattern can be removed when converted into test pattern.

VI. CONCLUDING REMARKS

How the proposed model based on inherent faults of (com-
plex) gates can be combined with classical ATPG techniques to
generate a test set for stuck-at fault testing of nets needs further
discussion. This paper proposes a semi-automatic pattern gen-
eration process based on functional tests to lay the foundation
for future work on generating sequential test sets. It remains
to be shown, how the GIF-PO model can be incorporated into
more advanced techniques in the field of automatic functional
pattern generation (AFPG).

How register mapping (for instance for one-hot FSM),
register duplication and balancing impacts the proposed RTL
ATPG model, and how sequential test sets help to overcome
potential limitations also needs to be discussed. In the context
of generating 100% stuck-at fault coverage based on advanced
AFPG techniques, aspects like transition faults, realistic path
selection for at-speed testing, a reduced overtesting and a
reduced false path testing will need to be evaluated. The
proposed GIF-PO ATPG model can also be used for BIST
implementations, which are optimized on RTL.

REFERENCES

[1] I. Harris, ”Hardware-Software Covalidation: Fault Models and Test
Generation”, Proc. Sixth IEEE Intern. High-Level Design Validation and
Test Workshop, 7-9 Nov. 2001, Monterey, CA, USA, pp. 151-156.

[2] S. Park, L. Chen, P. Parvathala, S. Patil, and I. Pomeranz, ”A Functional
Coverage Metric for Estimating the Gate-Level Fault Coverage of
Functional Tests”, IEEE Intern. Test Conf., ITC ’06, Oct. 2006, Santa
Clara, CA, USA, pp. 1-10.

[3] H. Fang, K. Chakrabarty, A. Jas, S. Patil, C. Tirumurti, ”RT-Level
Deviation-Based Grading of Functional Test Sequences”, 27th IEEE
VLSI Test Symposium, VTS ’09, 3-7 May 2009, Santa Cruz, CA, USA,
pp. 264-269.



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 10

[4] H. Fang, K. Chakrabarty, A. Jas, S. Patil, C. Tirumurti, ”RT-Level
Deviation-Based Grading of Functional Test Sequences”, IEEE Trans.
on VLSI, vol. 20, no. 10, October 2012, pp. 1890-1894.

[5] C. Hobeika, C. Thibeault, and J.-F. Boland, ”Use of Structural Tests
in RTL Verification”, IEEE 1st Microsystems and Nanoelectronics
Research Conf., MNRC 2008, 15 Oct. 2008, Ottawa, Ont., Canada, pp.
133-136.

[6] A. Sanyal, K. Chabrabarty, M. Yilmaz, and H. Fujiwara, ”RT-Level
Design-for-Testability and Expansion of Functional Test Sequences for
Enhanced Defect Coverage”, IEEE Intern. Test Conf. ITC, 2-4 Nov.
2010, Austin, TX, USA, pp. 1-10.

[7] W. Mao, and R. Gulati, ”Improving Gate Level Fault Coverage by RTL
Fault Grading”, Proc. of Intern. Test Conf., ITC 1996, 20-25 Oct. 1996,
Washington, DC, USA, pp. 150-159.

[8] M. Santos, F. Goncalves, I. Teixeira, and J Teixeira, ”RTL-based
Functional Test Generation for High Defects Coverage in Digital SOCs”,
Proc. IEEE European Test Workshop, 23-26 May 2000, Cascais, Portu-
gal, pp. 99-104.

[9] Y. Zhang, H. Li, and X. Li, ”Software-Based Self-Testing of Processors
Using Expanded Instructions”, IEEE 19th Asian Test Symposium, ATS
10, 1-4 Dec. 2010, Shanghai, China, pp. 415-420.

[10] F. Ferrandi, G. Ferrara, G. Fornara, F. Fummi, and D. Sciuto, ”Testability
Alternatives Exploration through Functional Testing”, Proc. of 18th
IEEE VLSI Test Symposium, 30 Apr. - 4 May 2000, Montral, Que.
Canada, pp. 423-428.

[11] V. Chaiyakul, D. Gajski, and L. Ramachandran, ”High-Level Transfor-
mations for Minimizing Syntactic Variances”, 30th Conf. on Design
Automation, 14-18 June 1993, Dallas, TX, USA, pp. 413-418

[12] I. Gosh, and M. Fujita, ”Automatic Test Pattern Generation for Func-
tional Register-Transfer Level Circuits Using Assignment Decision
Diagrams”, IEEE Trans. on CAD, vol. 20, no. 3, March 2001, pp. 402-
415.

[13] I. Gosh, and M. Fujita, ”Automatic Test Pattern Generation for Func-
tional Register-Transfer Level Circuits Using Assignment Decision
Diagrams”, Proc. Of DAC, 5-9 June 2000, LA, CA, USA, pp. 43-48.

[14] L. Zhang, I. Ghosh, and M. Hsiao, ”Efficient Sequential ATPG for
Functional RTL Circuits”, Proc. of Intern. Test Conf. ITC, 30th Sept.-
2nd Oct. 2003, pp. 290-298.

[15] L. Zhang, M. Hsiao, and I. Ghosh, ”Automatic Design Validation
Framework for HDL Description via RTL ATPG”, Proc. of 12th Asian
Test Symposium, 16-19 Nov. 2003, Xi’an, China, pp. 148-153.

[16] L. Zhang, I. Ghosh, and M. Hsiao, ”A Framework for Automatic Design
Validation of RTL Circuits Using ATPG and Observability-Enhanced
Tag Coverage”, IEEE Trans. on CAD, vol. 25, no. 11, Nov. 2006, pp.
2526-2538.

[17] L. Lingappan, S. Ravi, N. Jha, ”Test Generation for Non-separable
RTL Controller-datapath Circuits using a Satisfiability based Approach”,
Proc. of 21st Intern. Conf. on Computer Design ICCD, 13-15 Oct. 2003,
San Jose, CA, USA, pp. 187-193.

[18] L. Lingappan, S. Ravi, N. Jha, ”Satisfiability-Based Test Generation for
Nonseparable RTL Controller-Datapath Circuits”, IEEE Trans. on CAD,
vol. 25, no. 3, March 2006, pp. 544-557.

[19] L. Lingappan, and N. Jha, ”Satisfiability-Based Test Program Generation
and Design for Testability for Microprocessors”, IEEE Trans. on VLSI,
vol. 15, no. 5, May 2007, pp. 518-530.

[20] M. Obien, S. Ohtake, and H. Fujiwara, ”Constrained ATPG for Func-
tional RTL Circuits Using F-Scan”, IEEE Intern. Test Conference ITC
2010, 2-4 Nov. 2010, Austin, TX, USA, pp. 1-10.

[21] L. Lingappan, V. Gangaram, N. Jha, and S. Chakrvarty, ”Fast Enhance-
ment of Validation Test Sets to Improve Stuck-at Fault Coverage for
RTL circuits”, 20th Intern. Conf. on VLSI Design VLSID’07, 6-10 Jan.
2007, Bangalore, India, pp. 504-512.

[22] L. Lingappan, V. Gangaram, N. Jha, and S. Chakrvarty, ”Fast Enhance-
ment of Validation Test Sets for Improving the Stuck-at Fault Coverage
of RTL Circuits”, IEEE Trans. on VLSI, vol. 17, no. 5, 2009, pp. 697-
708.

[23] L. Lingappan, and N. Jha, ”Unsatisfiability based Efficient Design for
Testability Solution for Register-transfer Level Circuits”, Prod. of 23rd
IEEE VLSI Test Symposium VTS’05, 1-5 May 2005, Palm Springs,
CA, USA, pp. 418-423.

[24] L. Lingappan, and N. Jha, ”Efficient Design for Testability Solution
Based on Unsatisfiability for Register-transfer Level Circuits”, IEEE
Trans. on CAD, vol. 26, no. 7, July 2007, pp. 1339-1345.

[25] C.-H. Chen, and D. Saab, ”A Novel Behavioral Testability Measure”,
IEEE Trans. On CAD, vol. 12, no. 12, December 1993, pp. 1960-1970.

[26] I. Gosh, A. Raghunathan, and N. Jha, ”A Design for Testability Tech-
nique for RTL Circuits Using Control/Data Flow Extraction”, Intern.

Conf. on CAD, ICCAD96, 10-14 Nov. 1996, San Jose, CA, USA, pp.
329-336.

[27] I. Gosh, A. Raghunathan, and N. Jha, ”A Design for Testability
Technique for RTL Circuits Using Control/Data Flow Extraction”, IEEE
Trans. on CAD, vol. 17, no. 8, August 1998, pp. 706-723.

[28] J. Lee, and J. Patel, ”Architectural Level Test Generation for Micro-
processors”, IEEE Trans. on CAD, vol. 13, no. 10, October 1994, pp.
1288-1300.

[29] J. Raik, and R. Ubar, ”Fast Test Pattern Generation for Sequential
Cirtuits Using Decision Diagram Representations”, Journal of Electronic
Testing, Kluwer Academic Publishers, 2000, pp. 213-226.

[30] J. Raik, and R. Ubar, ”Sequential Cirtuit Test Generation Using Decision
Diagram Representations”, Proc. Design, Automation and Test in Europe
Conf., DATE 1999, 9-12 March 1999, Munich, Germany, pp. 736-740.

[31] F. Corno, G. Cumani, M. Reorda, and G. Squillero, ”Effective Tech-
niques for High-level ATPG”, Proc. of 10th Asian Test Symposium,
ATS01, Kyoto, Japan, pp. 225-230.

[32] H. Wada, T. Masuzawa, K. Saluja, and H. Fujiwara, ”Design for Strong
Testability of RTL Data Paths to Provide Complete Fault Efficiency”,
13th Intern. Conf. on VLSI, 3-7 Jan. 2000, Calcutta, India, pp. 300-305.

[33] F. Fallah, S. Devadas, and K. Keutzer, ”Functional Vector Generation
for HDL Models Using Linear Programming and Boolean Satisfiability”,
IEEE Trans. CAD, vol. 20, no. 8, August 2001, pp. 994-1002.

[34] Z. Yin, Y. Min, and X. Li, ”An Approach to RTL Fault Extraction and
Test Generation”, 10th Asian Test Symposium, 19-21 Nov. 2001, Kyoto,
Japan, pp. 219-224.

[35] S. Yadavalli, I. Pomeranz, and S. Reddy, ”MUSTC-Testing: Multi-Stage-
Combinational Test Scheduling at the Register-Transfer-Level”, Proc. of
8th Intern. Conf. onVLSI Design 1995, 4-7 Jan. 1995, New Delhi, India,
pp. 110-115.

[36] U. Dave, and J. Patel, ”A Functional-Level Test Generation Methodology
Using Two-Level Repre-sentations”, 26th Conf. on Design Automation,
DAC, 25-29 June 1989, Las Vegas, NV, USA, pp. 722-725.

[37] J. Jacob, and V. Agrawal, ”Functional Test Generation for Sequential
Circuits”, The Fifth Intern. Conf. on VLSI Design, 4-7 Jan. 1992,
Bangalore, India, pp. 17-24.

[38] F. Corno, G. Cumani, M. Reorda, and G. Squillero, ”An RT-level Fault
Model with High Gate Level Correlation”, Proc. IEEE Intern. High-
Level Design Validation and Test Workshop, 8-10 Nov. 2000, Berkeley,
CA, USA, pp. 3-8.

[39] I. Pomeranz, and S. Reddy, ”Estimating the Relative Single Stuck-at
Fault Coverage of Test Sets for a Combinational Logic Block from
its Functional Description”, Proc. Sixth IEEE Intern. High-level Design
Validation and Test Workshop, HLDVT01, 7-9 November 2001, pp. 31-
35.

[40] J. Kang, S. Seth, and V. Gangaram, ”Efficient RTL Coverage Metric
for Functional Test Selection”, 25th IEEE VLSI Test Symposium, 6-10
May 2007, Berkeley, CA, USA, pp. 318-324.

[41] G. Jervan, Z. Peng, O. Goloubeva, M. Reorda, and M. Violante, ”High-
Level and Hierarchical Test Sequence Generation”, Seventh IEEE Inter.
High-Level Design Validation and Test Workshop, 27-29 Oct. 2002,
Cannes, France, pp. 169-174.

[42] T. Sarfert, R. Markgraf, E. Trischler, and M. Schulz, ”Hierarchical Test
Pattern Generation Based on High-Level Primitives”, Proc. Intern. Test
Conf. 1989, 29-31 Aug. 1989, Washington, DC, USA, pp. 470-479.

[43] T. Sarfert, R. Markgraf, M. Schulz, and E. Trischler, ”Hierarchical Test
Pattern Generation Based on High-Level Primitives”, IEEE Trans. on
CAD, vol. 11, issue 1, Jan. 1992, pp. 34-44.

[44] V. Vedula, and J. Abraham, ”A Novel Methodology for Hierarchical
Test Generation using Functional Constraint Composition”, IEEE Intern.
High-Level Design Validation and Test Workshop, 8-10 Nov. 2000,
Berkeley, CA, USA, pp. 9-14.

[45] J.Lee, and J. Patel, ”Hierarchical Test Generation Under Architectural
Level Functional Constraints”, IEEE Trans. CAD, vol. 15, no. 9,
September 1996, pp. 1144-1151.

[46] Y. Makris, and A. Orailoglu, ”Property-Based Testability Analysis
for Hierarchical RTL Designs”, Proc. of 6th IEEE Intern. Conf. on
Electronics, Circuits and Systems, ICECS99, 5-8 September 1999, Pafos,
Cyprus, pp. 1089-1092

[47] Y. Makris, and A. Orailoglu, ”DFT Guidance through RTL Test Justifi-
cation and Propagation Analysis”, Proc. Intern. Test Conf. 1998, 18-23
October 1998, Washington, DC, USA, pp. 668-677.

[48] Y. Makris, J. Collins, A. Orailoglu, and P. Vishakantaiah, ”TRANS-
PARENT: A System for RTL Testability Analysis, DFT Guidance and
Hierarchical Test Generation”, Proc. of the IEEE Custom Integrated
Circuits Conf. 1999, 16-19 May 1999, San Diego, CA, USA, pp. 159-
162



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 11

[49] Y. Makris, J. Collins, A. Orailoglu, and P. Vishakantaiah, ”Transparency-
based Hierarchical Test Generation for Modular RTL Designs”, Proc. of
the 2000 IEEE Intern. Symposium on Circuits and Systems, ISCAS
2000, 28-31 May 2000, Geneva, Switzerland, pp. 689-692.

[50] R. Kunda, P. Narain, j. Abraham, and B. Rathi, ”Speed up of Test Gener-
ation Using High-Level Primitives”, 27h ACM/IEEE Design Automation
Conference, DAC, 24-28 June 1990, Orlando, FL, USA, pp. 594-599.

[51] A. Magdolen, J. Bezakova, E. Gramatova, and M. Fischerova,
”REGGEN Test Pattern Generation on Register Transfer Level”, Proc.
EURO-DAC 93, 20-24 Sept. 1993, Hamburg, Germany, pp. 259-264.

[52] H. Li, Y. Min, and Z.Li, ”An RT-level ATPG Based on Clustering of
Circuit States”, 10th Asian Test Symposium, 19-21 Nov. 2001, Kyoto,
Japan, pp. 213-218.

[53] T. Hosokawa, R. Inoue, and H. Fujiwara, ”Fault-dependent/independent
Test Generation Methods for State Observable FSMs”, 16th Asian Test
Symposium, ATS ’07, 8-11 Oct. 2007, Beijing, China, pp. 275-280.

[54] R. Inoue, T. Hosokawa, and H. Fujiwara, ”A Test Generation Method
for State-Observable FSMs to Increase Defect Coverage under the Test
Length Constraint”, 17th Asian Test Symposium, ATS ’08, 24-27 Nov.
2008, Sapporo, Japan, pp. 27-34.

[55] G. Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli, ”Improving
high-level and gate-level testing with FATE: A functional automatic test
pattern generator traversing unstabilised extended FSM”, IET Computers
& Digital Techniques, vol. 1, issue 3, May 2007, pp. 187-196.

[56] M. Mirzai, M. Tabandeh, B. Alizadeh, and Z. Navabi, ”A New Approach
for Automatic Test Pattern Generation in Register Transfer Level Cir-
cuits”, IEEE Design & Test, vol. 30, issue 4, March 2013, pp 49-59.

[57] I. Pomeranz, S. Patil, and P. Parvathala, ”A Functional Fault Model
with Implicit Fault Effect Propagation Requirements”, 15th Asian Test
Symposium 2006, ATS 06, 20-.23 Nov. 2006, Fukuoka, Japan, pp. 95-
102.

[58] M. Lajolo, M. Rebaudengo, M. Reorda, M. Violante, ”Behavioral-level
Test Vector Generation for System-on-Chip Design”, Proc. IEEE Intern.
High-Level Design Validation and Test Workshop, 8-10 Nov. 2000,
Berkeley, CA, USA, pp. 21-25.

[59] S. Ravi, I.Ghosh, V. Boppana, and K. Jha, ”Fault-Diagnosis-Based
Technique for Establishing RTL and Gate-Level Correspondences”,
IEEE Trans. on CAD, vol. 20, no. 12, December 2001, pp. 1414-1425.

[60] M. Rumplik, and J. Strnadel, ”On RTL Testability and Gate-Level Stuck-
At-Fault Coverage Correlation for Scan Circuits”, 14th Euromicro Conf.
on Digital System Design, DSD11, 31 Aug. - 2 Sept. 2011, Oulu,
Finland, pp. 367-374.

[61] A. Al-Yamani, and E. McCluskey, ”Test Quality for High Level Struc-
tural Test”, Ninth IEEE intern. High-level Design Validation and Test
Workshop, HLDVT04, 10-12 Nov. 2004, Sonoma Valley, CA, USA, pp.
109-114.

[62] E. Rudnik, F. Corno, R. Vietti, P. Prinetto, A. Ellis, and M. Reorda,
”Fast Sequential Circuit Test Generation Using High-Level and Gate-
Level Techniques”, Proc. Design, Automation and Test in Europe, DATE
1998, 23-26 Feb.1998, Paris, France, pp. 570-576.

[63] B. Vinnakota, and J. Andrews, ”Fast Fault Translation”, IEEE Trans. on
VLSI, vol. 6, no. 1, March 1998, pp. 122-133.

[64] M. Prabhu, and J. Abraham, ”Functional Test Generation for Hard
to Detect Stuck-At Faults using RTL Model Checking”, 17th IEEE
European Test Symposium, ETS, 28-31 May 2012, Annecy France, pp.
1-6.

[65] S. Ravi, and N. Jha, ”Fast Test Generation for Circuits with RTL and
Gate-Level Views”, Proc. of Intern. Test Conference, 2001, 30 Oct. 1
Nov., Baltimore, MD, USA, pp. 1068-1077.

[66] C. Chen, C. Wei, T. Lu, and H. Gao, ”Software-Based Self-Testing With
Multiple-Level Abstractions for Soft Processor Cores”, IEEE Trans. on
VLSI, vol. 15, no. 5, May 2007, pp. 505-517.

[67] P. Thaker, V. Agrawal, and M. Zaghloul, ”A Test Evaluation Technique
for VLSI Circuits using Register-Transfer Level Fault Modeling”, IEEE
Trans. on CAD, vol. 22, issue 8, Aug. 2003, pp. 1104-1113.

[68] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
”Instruction-Level Impact Comparison of RT- vs. Gate-Level Faults in a
Modern Microprocessor Controller”, 27th IEEE VLSI Test Symposium,
3-7 May 2009, Santa Cruz, CA, USA, pp. 9-14.

[69] J. Campos, and H. Al-Asaad, ”Mutation-Based Validation of High-Level
Microprocessor Implementations”, Ninth IEEE intern. High-level Design
Validation and Test Workshop, HLDVT04, 10-12 Nov. 2004, Sonoma
Valley, CA, USA, pp. 81-86.

[70] C. Hobeika, C. Thibeault, and J. Boland, ”Illegal State Extraction From
Register Transfer Level”, 8th IEEE Intern. NEWCAS Conference, 20-23
June 2010, Montreal, QC, Canada, pp. 245-248.

[71] C. Hobeika, C. Thibeault, and J. Boland, ”Functional Constraint Extrac-
tion From Register Transfer Level for ATPG”, IEEE Trans. on VLSI,
vol. 23, no. 2, February 2015, pp. 407-412.

[72] C. Chec, and T. Noh, ”VHDL Behavioral ATPG and Fault Simulation
of Digital Systems”, IEEE Trans. on Aerospace and Electronic Systems,
vol. 34, no. 2, April 1998, pp. 428-447.

[73] T. Pecenka, J. Strnadel, Z. Kotasek, and L. Sekanina, ”Testability
Estimation Based on Controllability and Observability Parameters”,
Proc. of the 9th Euromicro Conf. on Digital System Design, DSD06,
30 August 1 September 2006, Dubrovnik, Croatia, pp. 504-514.

[74] M. Lynch, and S. Singer, ”A Next Generation Diagnostic ATPG System
Using the Verilog HDL”, IEEE Intern. Verilog HDL Conf., 31 March
2 April 1997, Santa Clara, CA, USA, pp. 56-63.

[75] S. Chiusao, F. Corno, P. Prinetto, ”RT-level TPG Exploiting High-Level
Synthesis Information”, 17th IEEE VLSI Test Symposium 1999, 25-29
April, 1999, Dana Point, CA, USA, pp. 341-346.

[76] F. Corno, M. Reorda, G. Squillero, ”High-Level Observability for
Effective High-Level ATPG”, Proc. of 18th IEEE VLSI Test Symposium
2000, 30 April 4 May 2000, Montreal, Canada, pp. 411-416.

[77] P. Vishakantaiah, J. Abraham, and M. Abadir, ”Automatic Test Knowl-
edge Extraction From VHDL (ATKET)”, 29th ACM/IEEE Design
Automation Conf. DAC 1992, 8-12 Jun 1992, Anaheim, CA, USA, pp.
273-278.

[78] V. Pitchumani, P. Mayor, and N. Radia, ”Fault Diagnosis using Func-
tional Fault Models for VHDL descriptions”, Proc. Intern. Test Conf.
1991, 26-30 Oct. 1991, Nashville, TN, USA, pp. 327-337.

[79] M. Santos, F. Goncalves, I. Teixeira, and J Teixeira, ”Implicit Func-
tionality and Multiple Branch Coverage (IFMB): A Testability Metric
for RT-Level”, Proc. Intern. Test Conference, ITC’01, 30 Oct - 1 Nov,
Baltimore, MD, USA, pp. 377-385.

[80] S. Ohtake, M. Inoue, and H. Fujiwara, ”A Method of Test Generation
for Weakly Testable Data Paths Using Test Knowledge Extracted from
RTL Description”, Proc. of 8th Asian Test Symposium, ATS99, 18 Nov.
1999, Shanghai, China, pp. 5-12.

[81] F. Javaheri, M. Namaki-Shoushtari, P. Kamranfar, and Z. Navabi, ”Map-
ping Transaction Level Faults to Stuck-at Faults in Communication
Hardware”, 20th Asian Test Symposium, ATS ’11, 20-23 Nov. 2011,
New Delhi, India, pp. 114-119.

[82] Y. Lin, F. Lu, and K. Cheng, ”Pseudofunctional Testing”, IEEE Trans.
on VLSI, vol. 25, no. 8, August 2006, pp. 1535-1546.

[83] H. Tsai, K. Cheng, and S. Bhawmik, ”Improving The Test Quality for
Scan-based BIST using A General Test Application Scheme”, 27th Conf.
on Design Automation, DAC, 21-25 June 1999, New Orleans, LA, USA,
pp. 748-753.

[84] H. Tsai, K. Cheng, and S. Bhawmik, ”On Improving Test Quality of
Scan-Based BIST”, IEEE Trans. on CAD, vol. 19, no. 8, August 2000,
pp. 928-938.

[85] M. Santos, J. Fernandes, I Teixeira, and J. Teixeira, ”RTL Test Pattern
Generation for High Quality Loosely Deterministic BIST”, Proc. of
Design, Automation and Test in Europe, DATE 2003, 7th Mar. 2003,
Munich, Germany, pp. 994-999.

[86] D. Berthelot, M. Flottes, and B. Rouzeyre, ”BISTing Data Paths at
Behavioral Level”, IEEE Intern. Test Conf., ITC’00, Oct. 2000, Atlantic
City, NJ, CA, USA, pp. 672-680.

[87] T. Masuzawa, M. Izutsu, and H. Wada, ”Single-control Testability of
RTL Data Paths for BIST”, Proc. of the Ninth Asian Test Symposium,
ATS00, 6th December 2000, Taipei, Waiwan, pp. 210-215.

[88] I. Ghosh, N. Jha, and S. Bhawmik, ”A BIST Scheme for RTL Circuits
Based on Symbolic Testability Analysis”, IEEE Trans. on CAD, vol. 19,
no. 1, August 2000, pp. 111-128.

[89] N. Yogi, and V. Agrawal, ”Spectral RTL Test Generation for Gate-Level
Stuck-at Faults”, 15th Asian Test Symposium, ATS’06, 20-23 Nov. 2006,
Fukuoka, Japan, pp. 83-88.

[90] N. Yogi, and V. Agrawal, ”Spectral RTL Test Generation for Micro-
processors”, 20th Intern. Conf. on VLSI Design, Jan. 2007, Bangalore,
India, pp. 473-478.

[91] M. Karunaratne, and F. Hill, ”A Vector Based Backward State justifi-
cation Search for Test Generatio in Sequential Circuits”, Proc. of Ninth
Annual Intern. Phoenix Conf. on Computers and Communications, 21-
23 march 1990, Scottsdale, AZ, USA, pp. 630-637.

[92] S. Ohtake, N. Ikeda, M. Inoue, and H. Fujiwara, ”A Method of Un-
sensitizable Path Identification using High Level Design Information”,
5th Intern. Conf. on Design and Technology of Integrated Systems in
Nanoscale Era, DTIS 2010, 23-25 March 2010, Hammamet, Tunesia,
pp. 1-6.



T. STRAUCH: A NOVEL RTL ATPG MODEL BASED ON GATE INHERENT FAULTS (GIF-PO) OF COMPLEX GATES 12

[93] T. Strauch, ”Deriving AOC C-Models from D&V Languages for Single-
or Multi-Threaded Execution Using C or C++”, 18. Workshop Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, MBMV 2015, 3-4 March, Chemnitz,
Germany, pp. 173-182.

[94] F. Ferrandi, G. Ferrara, D. Sciuto, A. Fin, and F. Fummi, ”Functional
Test Generation for Behaviorally Sequential Models”, Proc. of Design,
Automation and Test in Europe, DATE 2001, 13-16 Mar. 2001, Munich,
Germany, pp. 403-410.

Tobias Strauch received his Diploma (FH) at the University of applied
science (FH) Furtwangen, Germany in ’98. He works for EDAptix in Munich,
Germany. His field of interests are hardware assisted verification, PDVL,
TLM, C-Slow Retiming, System Hyper Pipelining, High Level ATPG, FPGA
debugging and wave based data transfer.


	I Introduction
	II Survey on RTL ATPG
	II-A Related work on functional simulation based RTL ATPG
	II-B Fault models based on 9-Value algebra
	II-C Control and/or datapath oriented RTL fault models
	II-D Fault models based on low level transformation
	II-E Fault models based on input/ouput relations
	II-F Fault models based on hierarchical structure
	II-G State machine fault models
	II-H Considering gate level fault models
	II-I RTL ATPG using fault/error injection
	II-J Textual fault models
	II-K Knowledge based RTL ATPG
	II-L RTL ATPG and TLM
	II-M BIST RTL ATPG
	II-N Miscellaneous

	III The GIF-PO RTL fault model
	III-A A simple example
	III-B Using more complex gates
	III-C The gate inherent fault (GIF)
	III-D The GIF-GO model definition
	III-E Logic duplication
	III-F The GIF-PO model definition
	III-G The example continued
	III-H The GIF-PO model on RTL
	III-I An adder example
	III-J A multiplier example
	III-K Difference to related RTL ATPG models

	IV A semi-ATPG framework
	IV-A Introduction of the used semi-ATPG framework
	IV-B Discussion on the proposed flow
	IV-C Difference to related work

	V Results
	VI Concluding Remarks
	References
	Biographies
	Tobias Strauch


