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Abstract. In  this  paper  C-Slow  Retiming  (CSR)  on  RTL  is  discussed.  CSR
multiplies the functionality of cores by adding the same number of registers into
each path. The technique is ideal for FPGAs with their already existing registers.
Previously  publications  are  limited  to  adding  registers  on  netlist  level,  which
generates a lot of system verification problems and which is assumed to be the
major drawback to use this technology in the modern multicore times. The paper
shows  how  CSR  can  efficiently  be  done  with  timing  driven  automatic  RTL
modification. The methodology provided with this paper can be used as guidance
for using CSR in high level synthesis (HLS). The paper shows the results of a
CSR-ed complex RISC core on RTL implemented on FPGAs.
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Introduction
The increasing demands for higher performance and throughput of cores (CPUs,

DSPs, peripherals, …) have led to various techniques.  Pipelining a CPU engine (by
using register insertion) is the most common example. Adding a number of pipelines
into the instruction execution unit optimizes the throughput. Typically stall and flush
signals are added to cope with the dependency of the instructions. Automatic pipelining
of designs is outlined in [1]. 

All these methods are targeted to improve the performance of a single core. This
paper demonstrates a method of how to use pipelining to multiply the functionality of
a core. This is a fundamentally different outcome compared to what is known when
designs are pipelined. 

C-slow retiming uses pipelines to multiply the design behavior and to improve the
latency of a core, as shown in [2]. This paper concentrates on CSR firstly as a method
to increase performance per area when multiple equal cores are used (multicores) or if
the application allows the usage of multiple equal cores (for instance, when multiple
DSPs  can  increase  the  performance  compared  to  one).  CSR can  also  increase  the
throughput of a single design, especially for SoC interconnects, as shown in [3]. 

The key aspect of this paper is, that CSR is executed on RTL. The timing of the
design is estimated and the RTL is modified for register insertion automatically. This
has a serious impact on the flow and could be the key for a brighter acceptance of CSR.
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CSR on RTL can then be applied in the IP development group and the CSR-ed
core can be used by system architects, design developers and perhaps most importantly
during the SoC implementation and verification process. The results of this paper can
also be used as a guidance for CSR in HLS.

The “Theory of CSR” is explained in section 1. Section 2 shows the CSR on RTL
methodology and section 3 shows the results of  an CSR-ed complex RISC core in
detail.

1. Theory of CSR

Figure 1. Two functional independent designs.

Figure 1 shows the basic structure of a sequential circuit. In this case, the original
logic is sliced into two parts, and each original path has now 1 additional register. This
results in 2 functional independent designs using the logic in a time sliced fashion. It
shows how different parts of the logic are used during different cycles. The inputs and
outputs  are  valid  at  the  same  time  slice.  The  implemented  register  sets  are  called
“system pipelines”, SPs. Figure 1 shows one basic rule of CSR. There are only paths
from the SPs to the original register set and from the register to the SPs.

Figure 2. CSR core (CMF = 4) and individual clocks.

The  number  of  SPs  can  be  increased  (Figure  2)  and  the  resulting  number  of
independent designs is identical to its multiplication factor, called “core multiplication
factor”,  CMF.  It  is  important  to  notice,  that  each  SP gets  an individual  clock  tree
(clk_sp[n]).  They  can  be  used  for  power  scaling  techniques.  If  this  feature  is  not
needed, the clocks are connected on top level. 

The  main  benefit  is  the  multiplication  of  the  core's  functionality  by  only
implementing registers instead of instantiating the core multiple times. The reduced
area - compared to the area generated by individual cores - is a great advantage for
ASICs and very attractive for FPGAs with their already existing registers. The CSR-ed
design can run as many times faster as the number of the resulting segments (reduced
by the additional  setup and hold time of  the SPs),  but  it  also takes  CMF times to
execute the design. The performance remains the same. 

It is questionable if CSR can be done efficiently on netlist level. CPUs have a high
number of logic paths, which results in a long runtime of CSR for each synthesis P&R
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task, it needs to be specified, how the P&R-tool's functional modification of the core
can be handled and how the input/output and memory access is served. CSR on RTL
takes a few seconds and generates a defined RTL version of the core which can then be
embedded in the system logic and the input/output/memory access can be optimized.

2. CSR on RTL Methodology

In  this section the methodology of using CSR on RTL is presented.  The novel
approach  is  to  elaborate  the  RTL  source  code  and  to  estimate  the  timing  of  the
elaborated design before synthesis. After the CSR optimization and register placement
at the relevant signals in the design, the original RTL code is automatically modified.
This  modified  RTL  code  can  then  be  used  for  implementation,  verification  and
synthesis for any given implementation, flow or technology.

The  implemented  registers  are  called  “system  pipelines”,  SPs.  The  number  of
independent cores after the SP insertion is CMF (“core multiplication factor”). 

Figure 3. Registers, processes, assignments and RTLCs.

In the first step, the RTL code is read and elaborated. RTL is based on processes
and assignments, which are built by RTL constructs (RTLC), as shown in Figure 3. The
elaborated  database  holds  the  design  with  the  predefined  registers,  processes,
assignments, RTLCs and their connectivity. 
Table 1. VHDL/Verilog Code Mapping to Logic Depth 

RTLC VHDL Verilog 2-in Logic Depth
if if the else … ? … : … / if else 1

case case (sel) when case (sel) log2|sel|
math a + b, -, *, …  a + b, -, *, … |a|, |b|, |a+b|, ...
comb and, or, … &, |, … 1
unary &a, |a, ^a log2|a|
mux a[i] a[i] log2|a|, log2|i|

demux a[i] <= a[i] <= log2|a|, log2|i|
shift Shl, shr >>, << |a|, |i|

Table  1  shows  the  RTLC  examples  and  their  syntax  in  VHDL/Verilog.  Each
RTLC has a certain timing arc from the inputs to the output, which can be calculated
based on the dimension of the RTLC (for instance, the dimension of the case select
input). The resolution of the timing arc is “2-input logic depth” (2iLD). It is obvious,
that the 2iLD can easily be calculated for each path through a process or assignment
and for each register to register path. A bus is handles as a single path. For each RTLC,



ParaFPGA 2013, 10th - 13th September 2013, Munich, Germany

process or assignment, the worst case logic depth is taken. A 32x32-bit multiplier has
therefore only 2 paths.

A simple algorithm now implements the SPs between processes and assignments.
It thereby minimizes the 2iLD between SPs themselves as well as between SPs and
registers. All SPs are placed at the outputs of the registers and then continuously moved
through the logic, until an optimal distribution is reached.

Original Code: assign lhs = rhs1 & rhs2;

Modified Code: reg <rhs2_type> rhs2_sp1;
assign lhs = rhs1 & rhs2_sp1;
always @(posedge clk_sp1) 
rhs2_sp1 <= #1 rsh2;

Figure 4. Code modification example.

The  next  step  copies  the  original  RTL  files  and  modifies  the  RTL  code  to
implement the SPs. Figure 4 gives an example of the code modifications. The left hand
sided lhs signal depends on the two signals rhs1 and rhs2. If an SP should be placed at
rhs2, the RTL line is modified and a register signal of the same type is implemented.

The final optional step considers previous STA results based on already placed and
routed versions. It moves SPs to optimize the result (retiming). This step is skipped in
the initial trial or if no back-annotated STA results should be considered. 

The  optimal  segmentation  of  the  2iLD  paths  leads  to  a  reasonable  good
segmentation  of  the  LUT/gate  path. The  resulting CSR-ed design  has  very short
paths (typically 3 to 4 LUTs for high CMFs). The short logic cones have a small set of
permissible functions and a limited flexibility during technology mapping. Especially
FPGAs with 6-input LUTs generate very predictable and reproducible results for small
segments.

Figure 5. X2 distribution for single LUT-net-pair delay.
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Figure 6. N(µ, σ2) for consecutive LUT-net-pairs

Empirical  data  of  the  example  in  section 3 now shows,  that  these  small  logic
segments are very predictable in an unconstrained place and route step. A single LUT-
net-pair delay usually follows a X2 distribution (Figure 5), which leads with k>70 to a
Gaussian  distribution  of  consecutive  LUT-net-pairs  with  µLUT=825ps  (Figure  6).
Constrained physical  synthesis  now optimizes only very inefficient  segments  and is
very limited due to the high number and very short logic cones. 

So far it is not mentioned, how special function blocks (DSPs) are handled. An
RTLC, which can  be mapped to a  special  function block still  gets  a  certain 2iLD.
Empirical data shows, that timing arcs through a DSP-net-pair also follow a Gaussian
with µDSP=1520ps (Figure 6). This relation µLUT/µDSP is reflected in the calculation of
the 2iLD of special function blocks in FPGAs. 

Memory in-, out- and throughput timing is also calculated based on 2iLD. For high
CMFs, memories have a higher chance to be on the critical  path and they typically
dominate the critical CSR-ed path as well (see example in section 3). They are then
replaced with pipelined memories.

3. RISC Processor Example

This section describes the CSR on RTL of a RISC core. The original code is taken
from the OpenCores' OR1200 project [4]. The OR1200 is a 32-bit scalar RISC with
Harvard micro-architecture, 5 stage integer pipeline, virtual memory support (MMU),
basic DSP capabilities, TLB, instruction and data cache. The results are uploaded and
accessible at [4].

3.1. Slice Utilization and Performance for FPGAs

The next Tables show the area and timing results for a Virtex5 device from Xilinx.
In general,  ISE 11.1 with the place and route effort  option “standard” is used. The
results are based on a Virtex5 device (xc5vlx50-1ff676, package FF676, speed grade
-1). One implemented OR1200 core reaches 13.853ns (72.2MHz) on this device. The
“Achieved  Timing”  number  is  the  “Data  Path  Delay”  number  taken  from the  first
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report of the timing report (.twr). The “Theoretical Timing” considers the additional
delays introduced by the SPs. The sum of setup time (Tas) and the hold time (Tcko) is
0.400ns. The theoretical achievable timing is shown in Figure 7.

CMF == 2: (13.853ns + 0.400ns)/2 = 7.126ns (193% of 13.853ns)
CMF == 3: (13.853ns + 0.800ns)/3 = 4.884ns (282% of 13.853ns)
CMF == 4: (13.853ns + 1.200ns)/4 = 3.763ns (367% of 13.853ns)

Figure 7. Theoretical achievable timing.

Table 2. Utilization of Virtex5 Device 

CMF FF Slice LUTs Occupied Slices
1 (orig) 1239 3663 (12%) 1131 (15%)
2 3048 4535 (15%) 1414 (19%)
3 4153 5602 (19%) 1594 (22%)
4 4777 6286 (21%) 1773 (24%)

Table 2 shows the utilization results of the implemented CSR-ed OR1200 core. It
lists how the numbers of registers (FF), slice look up tables (LUTs) and occupied slices
increase with rising CMF. One core occupies 15% of the FPGA slices, whereas a CSR-
ed core with CMF = 4 (4 independent cores) only occupies 24% of the FPGA slices.
This is less than twice the original size, which is a significant area improvement. 
Table 3. Timing of Virtex5 Device 

CMF Theoretical Timing Constraint Achieved Timing LUT Levels
1 (orig) n/a 13.5ns 13.853ns 12

2 7.126ns 7.120ns 7.327ns 7
3 4.884ns 4.880ns 5.398ns R-Out + 3
4 3.763ns 3.763ns 4.902ns R-Out + 1

Table 4. Relative Utilization and Performance 

CMF Slice LUTs Relative
Utilization

Relative
Performance

Timing Ratio PpS
[kHz]

1 (orig) 1 1 1 1 63.8
2 1.23 1.25 1.88 0.97 96.1
3 1.52 1.40 2.56 0.90 116
4 1.71 1.56 2.82 0.76 114

Table 3 shows the theoretical timing (Figure 7), the constraint used for syntheses
and the achieved timing with the resulting LUT levels of the critical path. R-Out in
Table  3 indicates  a  RAM output.  The number  of  used  DSP48Es for  the 32x32-bit
multiplier remains 4.

Table 4 can be read as follows. With CMF = 2, the number of slice LUTs rises by
23% and the number of occupied slices by 25%. The performance increases by 88%,
which is 97% of the theoretical achievable timing. The performance per slice (PpS) is
96.1kHz. In non CSR-ed designs the area multiplies according to the CMF and the PpS
index remains constant.

The  average  delay  of  a  Virtex5  LUT-net-pair  delay  sum  is  assumed  to  be
µLUT=825ps. The difference between theoretical achievable timing and achieved timing
is within this granularity of one LUT-net-pair. It can be argued, that the increased area
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of  up  to  56%  should  also  be  considered  (CWLM).  This  worsens  the  achievable
theoretical timing and reduces the optimization gap. The difference between the timing
with  and  without  optimizations  based  on  back-annotated  data  is  also  within  the
granularity of one LUT-net-pair. This shows the efficiency of the proposed CSR on
RTL method. CSR can be executed once and the RTL is available as functional correct
IP for the implementation on system level.  Further timing optimizations are then
done  based  on  a  design  specific  implementation  with  standard  retiming
algorithms.

The  device  is  relatively  underutilized  (15%).  Other  examples  with  higher
utilization show, that the CSR-ed core can be better packed (less increase of occupied
slices  for  the  CSR-ed core).  The following results  are  based  on an  AVR core  [4]
implemented on a Spartan3 device (XS3S200a, package FG320, speed grade -4). This
is the smallest device for a single AVR core (occupied slices 59%, used 4-input-LUTs
48%) and it  is  not  possible to implement  2 or  more  individual  AVR cores  on this
device,  because  the  number  of  slices  are  with  2012  out  of  1792  available  slices
overmapped (112%).

Table 5. Utilization ans Timing of Spartan3 Device 

CMF FF 4-input LUTs Occupied
Slices

Achieved
Timing

PpS
[kHz]

1 (orig) 463 1748 (48%) 1062 (59%) 24.914ns 37.7
2 1125 2344 (65%) 1512 (84%) 14.763ns 44.8
3 1603 2691 (75%) 1790 (99%) 12.400ns 45.0
4 1716 2990 (83%) 1790 (99%) 11.290ns 49.4

Table 5 shows the number of FFs, 4-inputs LUTs and occupied slices of the CSR-
ed AVR core. Although it is not possible to implement 2 single AVR cores on this
device, the CSR on RTL method enables the implementation of a CSR-ed AVR core
with CMF = 4, which means that 4 independent AVR core behaviors are available. The
device  has  already  an  utilization  of  99%  for  CMF =  3,  but  still  registers  can  be
implemented to reach a CMF of 4. The achieved timing and the PpS improved with all
CMFs.

3.2. Area Ratio for ASICs

If  the  CSR-ed  OR1200  core  is  implemented  on  an  ASIC,  the  size  of  the
combinatorial  logic  (gates)  remains  almost  the  same,  only  the  number  of  registers
increases. This number should not be simply multiplied, because the registers of the
new  implemented  SPs  are  located  at  internal  signals.  An  m+n-adder  adds  m+n
registers, if the registers are placed at the inputs, but only max(m, n)+1, if they are
placed at the outputs of the adder logic. 
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Table 6. Area Ratio for ASICs

CMF FF Relativ FF Relative Area with
42(gate)/58(FF) Ratio

1 1239 1 1
2 2995 2.42 1.59
3 3769 3.04 1.85
4 4244 3.43 2.01

Figure 8. Area increase for multicores using CSR.

Table 6 shows the number of registers implemented in the OR1200 core without
the  FPGA  specific  timing  optimizations.  Figure  8  shows  the  results  of  Table  6
graphically. The number of registers increases by 142%, 204% and 243%. If the ratio
of register area and combinatorial logic is set to 42/58 (42% register area and 58%
combinatorial logic), which is based on a synthesis report using the lsi_10k library, the
area increases by 59%, 85% or 101% of the original area. In other words, the area of
the logic (excluding memories) of 4 CSR-ed OR1200 cores is only half as large as the
one of 4 individual OR1200 implementations. This is a significant area reduction.

Area  optimized  shift  registers  and/or  non-scan-FF  can  be  used.  CSR  based
multiprocessor  systems have  less  gate  count  and smaller  logic  cones  and  therefore
reduce test costs dramatically. 

4. Conclusion

In this paper we presented the novel approach to use CSR on RTL. It is shown how
CSR-ed cores generate area reduced multicores. CSR clearly changes the behavior of a
core and can only be fully utilized, if the CSR-ed core is embedded in a new logic
environment.  With the right wrapper logic, the CSR-ed core then behaves exactly as
the original core, but multiple and functional independent versions are available. This
has a dramatic impact on the flow, which makes it mandatory to have a solution on
higher level such as RTL. The CSR-ed version can be used as a new core in the design
and verification process. 

The authors doubt, that these modification can be done efficiently on netlists at all
(the OR1200 has 8*107 paths) and expect major flow problems in pure netlist based
approaches. The P&R-tool should not modify the core's behavior and should not need
to do the modifications over and over again. The runtime of the tool used in this paper
is within a few seconds.
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An algorithm for CSR on RTL is shown and utilization, area and timing results of
a comprehensive RISC processor are given. It shows that the CSR-ed core can provide
4 times the behavior for the area and utilization costs of 2 individual implementations.
The timing for the CSR-ed RISC example on RTL reaches the theoretical achievable
timing within the granularity of one LUT, eliminating the need to do the modifications
on netlist level. The authors are not aware of any results to compare with. Multicores
usually multiply the area as well (Figure 8) and have a constant performance per area
(slice) ratio (Table 4). The methodology presented in this paper can also be used if
CSR is used in HLS.

The examples are based on processors. Although CSR is not limited to processors
(the complete SoC-bus systems as well as peripherals  and DSPs can be CSR-ed as
well),  it  can  easily  be  imagined,  how  the  examples  can  be  embedded  in  a
multithreading processor design.
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