
MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

Deriving AOC C-Models from D&V Languages for Single-
or Multi-Threaded Execution Using C or C++

Tobias STRAUCH
R&D EDAptix

Munich, Germany
tobias@edaptix.com

 Abstract

The C language is getting more and more popular as a design and verification language
(DVL). SystemC, ParC [1] and Cx [2] are based on C. C-models of the design and
verification environment can also be generated from new DVLs (e.g. Chisel [3]) or
classical DVLs such as VHDL or Verilog. The execution of these models is usually
license free and presumably faster than their alternative counterparts (simulators). This
paper proposes activity-dependent, ordered, cycle-accurate (AOC) C-models to speed up
simulation time. It compares the results with alternative concepts. The paper also
examines the execution of the AOC C-model on a multithreaded processor environment.

1. Introduction

C based design and verification languages (DVL) have made an significant impact on the overall
design process throughout the last decades. What has been dominated by classical languages like
VHDL and Verilog (HDL) is now challenged by a fundamentally different approach. The C
language is used to model the design and verification environment. For that the design or the
testbench are either written in a syntax that is an extension to C, or the model is automatically
translated to C from other languages like VHDL and Verilog.

System level design in C++ is proposed by Verkest et al. in [4]. A language that can be seen as an
extension to C is for example SystemC [5]. The code can be directly compiled into an executable
for simulation and it can be used for synthesis. Speeding up SystemC simulation is shown by
Naguib et al. in [6]. A C-model is also used as an intermediate format in the design and verification
flow. Design and testbenches written in languages like Cx [2], Chisel [3], VHDL or Verilog are
translated into C, which can then be compiled with standard C compilers. An examples for tools
converting Verilog to C is the verilator [7], for converting Verilog into an intermediate format
iverilog [8], and for converting VHDL to machine code GHDL [9]. It is also proposed to co-
simulate design elements in C and other languages. Bombana et al. demonstrate VHDL and C level
cosimulation in [10] and Patel et al. evaluate on cosimulation of Bluespec and C based design
elements in [11].

C-models can be cycle or timing accurate representations of the design and test behavior. This is
true for most DVLs. In this paper it is assumed, that synthesis does not consider timing relevant
aspects (like “delays” for instance) and that the design under test (DUT), which is used for
synthesis, is modeled cycle accurately. A cycle (and not timing) accurate description of the DUT can
be seen as good design practice, regardless which language is used. A classical example cycle
accurate simulation is Hornet, a cycle level multicore simulator proposed by Ren et al. in [12].
Cycle based simulation using decision diagrams (DD) is discussed by Ubar et al. in [13] and based
on reduced colored Petri net (RCPN) by Reshadi et al. in [14].

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

In this paper an activity-dependent, ordered and cycle-accurate (AOC) C-model of the DUT is
proposed. Synthesis techniques are used to convert the RTL design into an elaborated
representation. A clock tree analysis enables a cycle accurate simulation of the DUT. The proposed
method allows an activity-dependent calculation of different design elements within individual
clock domains. The model can also be executed on a multiprocessor system or on a multithreaded
processor.

Section 2 describes the translation process of a DUT into a cycle-accurate C-model representation.
In section 3 the algorithm is enhanced to support AOC C-models. How the model can be improved
to support a multithreaded processor is shown in section 4. Section 5 describes how the AOC C-
model can be combined with other verification relevant aspects. The proposed model is then
compared to alternative concepts (section 6).

2. C-Model Generation

This section describes the C-model generation process. An algorithm is outlined in Figure 1, which
supports the process of translating a design from any common language like Verilog or VHDL into
a C-model.

1) Parsing source code
2) Hierarchy generation and parameter passing
3) Function and procedure enrollment
4) Variable unification and ordering
5) Signal and register detection
6) Clock tree detection and dependencies
7) Register and signal dependencies
8) Design graph optimizations
9) C code dumping

Figure 1: Algorithm for RTL to C-model conversion.

After parsing the source code, the design hierarchy is elaborated. During this step, parameter must
be passed and generate statements must be considered. Step 3 covers the enrollment of functions,
tasks and procedures. For both coding languages (VHDL and Verilog) a variable unification and
ordering (step 4) within a single process must be done. After this initial phase, signals and registers
need to be identified (step 5). The register detection leads to the step of clock line elaboration for
each register. This information is then collected to group registers to individual clock domains and
the dependencies of the clock domains itself (e.g. internal generated clocks, step 6). The aspect of
using a sensitivity list becomes obsolete. Instead a register and signal ordering based on their
dependencies takes place (step 7) and the resulting desing graph is further optimizes (step 8).
Finally the design is dumped as C code (step 9).

The conversion algorithm (Figure 1) is common to most HDL-to-C translation tools. After parsing
and elaborating the design, the database models the design in a design language independent format.
In some alternative design flows, the design is already available in a C-model like fashion and the
conversion and mapping steps are less complex. From step 6 onwards, the different language
specific aspects of the source code become irrelevant. The mapping of each RTL statement for the
Verilog and VHDL languages into C statements is listed in Table 1.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

Table 1. VHDL/Verilog syntax mapping
RTL VHDL Verilog C

if if the else … ? … : … / if else if () {} else {}
case case (sel) when case (sel) if () {} else {}

math a + b, -, *, … a + b, -, *, … +, -, *, ...
comb not, and, or, … ~, &, |, … !, &, |, ...
unary &a, |a, ^a !, &, |, ...
mux a(i) a[i] a[i]

demux a(i) <= a[i] <= a[i]
shift shl, shr >>, << >>, <<

It is important for the execution speed, how the design is represented when simulated. Therefore the
steps 8 “Design graph optimization” and 9 “C code dumping” have a huge impact on the simulation
performance of the C-model. The next section outlines various aspects of the design graph
optimization and modeling aspects.

3. AOC C-Model Generation

The activity dependent, ordered, cycle accurate (AOC) C-model generation is discussed in this
section. To a certain extend, almost all alternative models are AOC models. Some values (registers)
are only calculated at a certain (clock) event (activity dependent), values must be calculated based
on an ordered list (otherwise it will get very complicated if not impossible) and almost all models
are cycle accurate. Nevertheless, different design representation aspects and different design graph
optimization methods can lead to different execution speeds. Numbers will be shown in the result
section. Figure 2 lists the various aspects which are discussed in this section.

1) N level signal modeling
2) Multidimensional types and type size
3) Direct computations vs. function calls
4) Design flattening and optimizations
5) Clock and output domain modeling
6) Register ordering
7) Wire ordering
8) Activity dependent signal ordering

Figure. 2: Design Graph Optimization Methods and Design Modeling Aspects

3.1 Definitions

Given is a set of inputs I, outputs O, sequential elements R and a directed graph G of combinatorial
elements C and wires W. The simplest form of a combinatorial element c ϵ C is an assignment
(buffer). An c input (ci) can be an input i ϵ I, register r ϵ R or wire w ϵ W. A c output (co) can be an
output o ϵ O, register r ϵ R or wire w ϵ W. All w have one driving combinatorial element c. All c and
w build a directed graph without functional loops. A signal s ϵ S can be an i, o, r, or w ({I, O, R, W}
ϵ S). A register r can be an event or level sensitive sequential element.

A cr ϵ CR is a clock root and CR a list of all cr of the design. A cd ϵ CD is a set of registers with
identical cr. CD is a list of all cd in the design. The register cone input list rcil(r) is register specific

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

and is a complete list of register and input signals which drive the directed tree tr of combinatorial
elements (c) with (r) at its root. A primary input pi can be an input i or the output of a sequential
element r. A primary output po can be a register input r or an output o. All po with the same clock
root cr are grouped to a primary output domain pod(cr). The POD lists all pod(cr) of the design.

3.2 N-level Signal Modeling

For the optimization techniques discussed now, it is assumed that C variables of the standard type
“unsigned” generate faster execution models than their comparable representation as a specific
class. In the proposed AOC model generation, a 2-value representation of s is therefore default,
unless specified otherwise. Assuming the signal s0 is an 8 bit wide bus and should only simulate {0,
1}, then s0 can be of type “unsigned”. If s0 should simulate more than 2 values {0, 1, X, Z, ...},
then s0 must be represented by a specific signal-class.

3.3 Multidimensional Types and Type Size

The different signal types are elaborated and serialized. Let cw be the bit width of the type
“unsigned” of the target architecture for the model execution. A classical cw of a processor
architectures is 32 or 64. If (serialized) types have more than cw bits, then the C representation is a
two dimensional array of the serialized type. An exception to this rule is a 2-dimensional array type
with less than cw bits per dimension. In this case the type is also modeled as a “2-dimensional
unsigned array” but not serialized. If the signal must be modeled as a signal-class, then the class can
use a serialized or a dynamic representation.

3.4 Direct Computations vs. Function Calls

Each combinatorial element c should be modeled as a direct computation “a = b & c;” and not as a
function call “a = AND(b, c);”. If at lease one signal is a signal-class, then a function call “AND(a,
b, c);” is required. Functions must be provided to convert signals of type unsigned to or from a
signal-class.

3.5 Design Flattening and Optimizations

The design hierarchy is removed by flattening the design. Signal names are modified to guarantee
the uniqueness of the signal. For a better readability (debugging), the hierarchical instantiation
names are typically added as a prefix to the signal name (e.g. topi_subsystem1i_cpui_executei_pc)
but any other method/prefix to uniquify the signals is applicable.

The design builds a directed graph G of combinatorial elements C and signals S. Constant values
(e.g. a signal is driven by a constant value “s <= 1'b0;”) are propagated through G and all c ϵ C and
s ϵ S that become irrelevant are removed. Also direct assignment pairs “s2 <= s1; s1 <= s0;” are
simplified “s2 <= s0;” and the irrelevant entries in the design database (c, s) are removed. Most of
these direct assignment pairs result from design flattening.

3.6 Clock and Output Domain Modeling

After the register identification step, the clock (or enable) input of each register (r) is traced back to
its clock root (cr). Clock roots (cr) can be inputs (i) to the design, outputs of combinatorial logic (w)
or registers (r). The clock roots which are design inputs become independent driver of their
individual clock domain (cd). Clock roots which are latch or register outputs or outputs of logic

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

cones are drivers of clock domains, which dependent on other clock domains (cd).

All outputs o ϵ O are automatically grouped to the output domain OD (= O) ϵ POD. They are
independent of any clock (or enable) event and their value must be calculated whenever one of the
pi of their directed tree tr(o) has changed its value.

3.7 Register Ordering

The register list of each clock domain (cd) must be ordered, based on their interdependency. For
that the register cone input list (rcil(r)) is generated for each register. Figure 3 shows an example.

Figure 3: Simple Ordering and Ordering Using Split

The ordering of all r of one cd is trivial when their rcil(r) is used. The logic cones of Figure 3a can
easily be ordered and calculated. The registers of Figure 3b depend on each other and no clear order
can be found. At least one register must therefore be splitted into its output value and a pre-register
value that is calculated first. All relevant r then take over their pre-register value as an output value
at the end of the modeling task of a clock domain.

3.8 Wire Ordering

The directed tree tr(po) for each primary output po of a primary output domain pod(cr) must be
modeled. A po can either be a r or an o. Therefore the modeling of all wires w ϵ tr(po) must be
ordered based on their interdependency. A w gets the attribute wcal once it has been added to the list
of calculated w WL. Then it can be defined, that the value of a w can be calculated when the inputs
of the associated combinatorial logic element c are r, pi, or wcal. This constraint allows an ordering
of all w ϵ tr(po). The po value can be calculated when all w ϵ tr(po) are wcal. Each wcal holds its
attribute until all po of a POD are calculated. Therefore each relevant w of a pod(cr) is only
calculated once.

3.9 Activity Dependent Signal Ordering

An special modeling technique is the activity dependent signal ordering (ADSO). A combinatorial
element c changes its output value co only when at least one of their inputs ci has changed.
Classical HDLs like VHDL and Verilog support this fact by using a sensitivity list. Figure 4 shows
how ADSO is implemented in an AOC model.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

Figure 4: Implementing Activity Dependent Signal Ordering

The ADSO evaluation algorithm is based on two steps. In the first step, all outputs of combinatorial
elements co (= {w, r, po}) are placed on different levels l based on the following rules. Rule 1 says,
that each co must be placed on the lowest possible level. Rule 2 says, that a co which depends on a
list of ci (= {w, pi}) lci must be placed on a higher level than all w of lci. In the second step, all co
on a level l are grouped to signal groups sg(l) based on the following rule. Rule 3 says, that all co
on one l which depend on at least one identical wire w are grouped to a sg(l). The ordered signal list
OSL (dotted line in Figure 4) holds all sg(l) ordered by their individual level l assignment.

The ADSO execution algorithm adds the active attribute sgact to each sg. If a ci changes its value
during execution, then the following is applied. Rule 4 says, that the sgact is set for the sg for which
one of the co has the ci. All sg are evaluated based on the OSL. All co in an sg are only calculated,
if the sgact attribute is set. After the execution of an sg, the sgact attribute is cleared again.

4. Multithreaded Execution of AOC Models

When an AOC model should be executed on a multithreaded processor (or multiprocessor)
environment then the AODS algorithm must be enhanced by the following steps. In step 1, the
combinatorial elements c, wires w and output o of the output domain OD are added to each
individual clock domain cd, which are connected to the po of this cd. The resulting clock domain is
then called cdo. In step 2, the elements of a cdo are partitioned to be executed on individual threads
td. The number of maximal treads tdmax must be defined. Each individual po of the cdo is
uniquified and an individual ordered signal list OSL is generated. Therefore, cdo elements are
duplicated if they are elements of individual OSL. The OSL must be then merged as long as the
number of OSL is greater than tdmax based on the following rule. Rule 5 says, that these two OSL
out of all OSL are merged, which share the highest number of cdo elements. Figure 5 shows an
example of 3 cdo and 2 td/OSL.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

Figure 5: Enhanced Model for Multithreaded Execution

The memory model is critical for the program performance, especially when executed on a
multithreaded or multicore system. The “OpenCL Memory Model” [15] is shown in Figure 6. It is
used to demonstrate the memory usage of AOC models. Wires w do have a very short lifetime and
do not need to be shared among multiple threads. They are therefore stored in the “Private
Memory” (Figure 6) of a work-item (= thread). Registers r are stored throughout the program
runtime and most of them must be shared among multiple work-items. They are located in the
“Local Memory” (Figure 6) of a workgroup and become primary inputs pi in the next cycle.
Outputs o are calculated for each cycle and stored in the “Constant Memory”of the “Compute
Device” (Figure 6). Inputs i are also stored in the “Constant Memory” to be used by the work-items
as pi.

Figure 6: OpenCL Memory Model of the Compute Device

In the proposed OSL based modeling technique, wires w only have a very short lifetime. Two steps
can be made to improve the execution speed. In step 1, the following observations and definitions
are made. The order of w calculation within one level can be freely selected. It is defined that a wire
pair wp has a first wire fw and a second wire sw, whereas the sw depends on the fw. The wp with the
fw and the sw on consecutive levels are added to a level specific wire pair list WPL(l). The wp of
which the fw is only used by the sw are listed last in the WPL(l). The following rule is defined to
keep the values of w in the register file of a processor during execution. Rule 6 says, that for each
wp of the ordered WPL(l) the fw is added at the end and the sw is added at the beginning of the w
calculation of each level. This increases the chances that the compiler avoids memory accesses and
keeps the temporary values of w in the register file.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

In step 2, it is tried to avoid further time consuming memory access by reusing cache entries for
multiple wire calculations. To achieve this, a list of placeholders PHL and its maximal size (cache
size) phmax is defined. Rule 7 says, that a w is assigned to a PHL entry, if its value is used in the
remaining execution of the SGL. If the w is not needed anymore, than its PHL entry can be used by
another w. This rule and phmax must already be considered when two OSL are merged to a single
one (rule 5). Rule 7 can help the compiler to store values in a local cache. The parameters tdmax
and phmax are system specific.

Seven rules have been defined throughout the last two sections. They define the transformation
process of the device under test (DUT) - which can be seen as a directed graph G defined in section
3.1 - into an activity-dependent, ordered and cycle-accurate (AOC) C-model.

5. Testbenches

This paper discussed so far how synthesizeable HDL code can be transformed into AOC C-models.
An extended flow can be used to transfer testbenches (non-synthesize-able code) into timing
accurate representations in C++ format. Both models can then be linked to execute the same
simulation process as known from HDL simulators.

The additional aspects of this flow are the DUT definition and the sequential process identification.
Sequential processes are HDL statements, which are time consuming due to timing related
statements (example: “wait for 10 ns;”) or conditional statements (example: “wait on <signal>;”).
These processes cannot be converted into cycle accurate models, they need to be modeled timing
accurate. The resulting model has an condition checker and an event scheduler. Both reflect the
entries of the sequential processes. The flow for this methodology is outlined in Figure 7.

1) parsing source code
2) parameter passing and hierarchy
3) function and procedure enrollment
4) variable uniquification
5) DUT definition
6) sequential process identification
7) signal and register detection
8) clock tree detection and dependencies
9) register and signal logic cone conversion
10) register and signal dependencies
11) C++ code optimization and dumping
12) condition bag dumping
13) event scheduler dumping

Figure 7: Algorithm for HDL Testbench to Timing Accurate Modeling

A process in VHDL or Verilog is defined as a time-consuming process (TCP) when it is not within
the DUT hierarchy and when the keyword “wait” is used within this process. A TCP is partitioned
into individual list of assignments, based on the different wait statement. A list of assignments is
continuously executed until a “wait” statement is reached. This event is added to the event list in
case of a “wait for” statement, and to a the condition list in case of a “wait on” statement. The

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

execution of the assignment list of the TCP is continued, once the simulation time reaches the event
in the event list or when the condition in the condition list is true. The conditions in the condition
list are checked very simulation step.

6. PSL, Waveform and MatLab

6.1 PSL

The property specification language (PSL) can be used for checking design behavior during
verification. The language supports different flavors (VHDL, Verilog) and can be part of the design
RTL source code itself. The language is more and more used already on C/SystemC level or higher
level of abstraction as proposed by Habibi et al. in [16]. It is therefore important to incorporate the
structure into AOC C-models. Obereder et al. describe in [17], how PSL can be converted into
synthesizable HDL code. This approach can be used and the resulting synthesizable HDL code can
be converted into AOC C-models.

6.2 Waveform

Just like common HDL simulators, AOC C-models can dump simulation waveforms as well.
Signals can be defined manually, by script or by HDL syntax (example: Verilog). The AOC C-
model then dumps a cycle accurate VCD file during execution, which can then be viewed by a
standard waveform viewer.

6.3 Running AOC C-Models in Matlab

AOC C-models can also be executed in a Matlab [18] based environment. For that the C code must
be compiled into an S-function. It can then be co-simulated together with other Matlab based
simulation components. This is very useful for accelerators or custom DSPs designed in HDL. They
can then be simulated and verified in a much more flexible simulation environment than classical
HDLs can offer.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

7. Results

This section compares the execution speed of AOC C-models to alternative concepts. Different
testcases are used to measure the individual runtimes. The Verilog version of the OpenRISC SoC
was taken from [19] and a testcase was added. The verilator [7] and iverilog [8] runtime was then
compared to the runtime of the AOC C-model, which was automatically generated from the Verilog
source code. A single stage RISCV32IM processor [20] with a lengthy testcase was developed in
VHDL and SystemC. A Chisel version was taken from [21]. Their runtime was then compared to
the runtime of the AOC C-model, which was automatically generated from the VHDL source code.
A license for a standard simulator was not available. This is why a comparison number of verilator
vs. VCS was taken from [7] and added to the list as a VCS vs. AOC C-model relative runtime entry,
considering the fact, that the AOC C-mode is about 5.09 times faster than the verilator execution.
The numbers are based on tests executed on a single processor system. Table 2 and Figure 8 show
the results. The AOC C-models are always the 100% reference runtime.

Table 2. Relative runtime compared to AOC C-models.
verilator iverilog GHDL SystemC Chisel VCS

Relative Runtime 5.09 18.39 11.44 7.00 3.91 20.6
AOC C-model 1 1 1 1 1 1

Figure 8: Relative runtime comparison of the AOC C-model and alternatives.

The numbers show that the AOC C-models are always faster than any other known C-model
(iverilog, ….) based alternative. The compile time of the individual C-models are almost the same
and their comparison can be neglected.

8. Conclusion

This paper introduced activity dependent cycle accurate (AOC) C-models. Multiple improvement
steps can be applied to successively decrease the execution time. The main improvements are the
activity dependent solving of combinatorial logic equations and their execution based on an
extracted signal order. Tests show that they have a faster execution speed than pure cycle accurate
C-models or HDL simulators.

This paper also shows that the proposed AOC C-model fits nicely into a multiprocessor system .The
current research concentrates on generating AOC OpenCL-models for multiprocessor or
multithreading processor systems.

MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

9. References

[1] ParC, Available Online: http://parallel.cc/cgi-bin/bfx.cgi/index1.html

[2] Cx, Available Online: http://cx-lang.org/

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and K.
Asanonic, “Chisel: Constructing Hardware in a Scala Embedded Language”, DAC 2012,
Design Automation Conference, San Francisco, USA, 3-7 June 2012, pp. 1212-1221

[4] D. Verkest, J. Kunkel, and F. Schirrmeister, "System level design using C++", DATE 2000,
Proceedings of the Conference on Design, Automation and Test in Europe, Paris, France,
27-30 March 2000, Pages 74-83

[5] SystemC, Available Online: http://www.accellera.org/community/systemc/

[6] Youssef N. Naguib and Rafik S. Guindi, "Speeding Up SystemC Simulation through Process
Splitting", DATE 2007, Proceedings of the Conference on Design, Automation and Test in
Europe, Nice, France, 16-20 April 2007, Pages 1-6

[7] verilator, Available Online: http://www.veripool.org/wiki/verilator

[8] iverilog, Available Online: http://iverilog.icarus.com/home

[9] ghdl, Available Online: http://ghdl.free.fr/

[10] M. Bombana, and F. Bruschi, “SystemC-VHDL co-simulation and synthesis in the HW
domain”, DATE 2003, Proceedings of the Conference on Design, Automation and Test in
Europe, Munich, Germany, 3-7 March 2003, Pages 100-105

[11] H. Patel, and S. Shukla, “On Cosimulating Multiple Abstraction-Level System-Level
Models”, IEEE Transactions on CAD, Vol. 27, No. 2, February 2008, pp. 394-398

[12] P. Ren, M. Lis, M. Cho, K. Shim, and C. Fletcher, “HORNET: A Cycle-Level Multicore
Simulator”, IEEE Transactions on CAD, Vol. 31, No. 6, June 2012, pp. 890-903

[13] R. Ubar, A. Morawiec, and J Raik, “Cycle-based Simulation with Decision Diagrams”,
DATE 1999, Proceedings of the Conference on Design, Automation and Test in Europe,
Munich, Germany, 9-12 March 1999, Pages 454-458

[14] M. Reshadi, B. Gorjiara, and N. Dutt, “Generic Processor Modeling for Automatically
Generating Very Fast Cycle Accurate Simulators”, IEEE Transactions on VLSI, Vol. 25, No.
12, December 2006, pp. 2904-2918

[15] OpenCL, “Open Computing Language”, Available Online: https://www.khronos.org/opencl/

[16] A. Habibi, and S. Tahar, “Design and Verification of SystemC Transaction-Level Models”,
IEEE Transactions on VLSI, Vol. 14, No. 1, January 2006, pp. 57-68

[17] H. Obereder, and M. Pfaff, “Behavioral synthesis of property specification language (PSL)
assertions”, Rapid System Prototyping 2007, International Workshop on Rapid System
Prototyping, Porto Alegre, Portugal, 28-30 May 2007, pp. 157-160

[18] MATLAB, Available Online: www.mathworks.de/products/matlab

[19] OpenRISC SoC, Available Online: http://opencores.org/or1k/Main_Page

[20] The RISC-V Instruction Set Architecture, Available Online: http://riscv.org/

[21] The Sodor Processor Collection, Available Online, http://riscv.org/download.html#tab_sodor

http://parallel.cc/cgi-bin/bfx.cgi/index1.html
http://riscv.org/download.html#tab_sodor
http://riscv.org/
http://opencores.org/or1k/Main_Page
http://www.mathworks.de/products/matlab
https://www.khronos.org/opencl/
http://ghdl.free.fr/
http://iverilog.icarus.com/home
http://www.veripool.org/wiki/verilator
http://www.accellera.org/community/systemc/
http://cx-lang.org/

