
MBMV 2015, 3rd to 4th March 2015, Chemnitz, Germany

Deriving AOC C-Models from D&V Languages for Single-
or Multi-Threaded Execution Using C or C++

Tobias STRAUCH
R&D EDAptix

Munich, Germany
tobias@edaptix.com

  Abstract  

The C language is getting more and more popular as a design and verification language
(DVL).  SystemC,  ParC [1]  and Cx [2]  are  based  on C.  C-models  of  the  design  and
verification  environment  can  also  be  generated  from new DVLs  (e.g.  Chisel  [3])  or
classical  DVLs such as  VHDL or  Verilog.  The  execution  of  these  models  is  usually
license free and presumably faster than their alternative counterparts (simulators). This
paper proposes activity-dependent, ordered, cycle-accurate (AOC) C-models to speed up
simulation  time.  It  compares  the  results  with  alternative  concepts.  The  paper  also
examines the execution of the AOC C-model on a multithreaded processor environment.

1. Introduction

C based design and verification languages (DVL) have made an significant impact on the overall
design process throughout the last decades. What has been dominated by classical languages like
VHDL and  Verilog  (HDL)  is  now  challenged  by  a  fundamentally  different  approach.  The  C
language is  used to  model  the  design and verification  environment.  For  that  the design or  the
testbench are either written in a syntax that is an extension to C, or the model is automatically
translated to C from other languages like VHDL and Verilog.

System level design in C++ is proposed by Verkest et al. in [4]. A language that can be seen as an
extension to C is for example SystemC [5]. The code can be directly compiled into an executable
for  simulation and it  can be used for synthesis.  Speeding up SystemC simulation is  shown by
Naguib et al. in [6]. A C-model is also used as an intermediate format in the design and verification
flow. Design and testbenches written in languages like Cx [2], Chisel [3], VHDL or Verilog are
translated into C, which can then be compiled with standard C compilers. An examples for tools
converting Verilog to C is  the verilator  [7],  for converting Verilog into an intermediate  format
iverilog  [8],  and for  converting  VHDL to machine code GHDL [9].  It  is  also proposed to  co-
simulate design elements in C and other languages. Bombana et al. demonstrate VHDL and C level
cosimulation in [10] and Patel  et  al.  evaluate on cosimulation of Bluespec and C based design
elements in [11].

C-models can be cycle or timing accurate representations of the design and test behavior. This is
true for most DVLs. In this paper it is assumed, that synthesis does not consider timing relevant
aspects  (like  “delays”  for  instance)  and  that  the  design  under  test  (DUT),  which  is  used  for
synthesis, is modeled cycle accurately. A cycle (and not timing) accurate description of the DUT can
be seen as good design practice,  regardless which language is  used.  A classical  example cycle
accurate simulation is Hornet, a cycle level multicore simulator proposed by Ren et al.  in [12].
Cycle based simulation using decision diagrams (DD) is discussed by Ubar et al. in [13] and based
on reduced colored Petri net (RCPN) by Reshadi et al. in [14].
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In this  paper an activity-dependent,  ordered and cycle-accurate (AOC) C-model of the DUT is
proposed.  Synthesis  techniques  are  used  to  convert  the  RTL  design  into  an  elaborated
representation. A clock tree analysis enables a cycle accurate simulation of the DUT. The proposed
method allows  an  activity-dependent  calculation of  different  design  elements  within  individual
clock domains. The model can also be executed on a multiprocessor system or on a multithreaded
processor. 

Section 2 describes the translation process of a DUT into a cycle-accurate C-model representation.
In section 3 the algorithm is enhanced to support AOC C-models. How the model can be improved
to support a multithreaded processor is shown in section 4. Section 5 describes how the AOC C-
model  can  be  combined  with  other  verification  relevant  aspects.  The  proposed  model  is  then
compared to alternative concepts (section 6). 

2. C-Model Generation

This section describes the C-model generation process. An algorithm is outlined in Figure 1, which
supports the process of translating a design from any common language like Verilog or VHDL into
a C-model. 

1) Parsing source code
2) Hierarchy generation and parameter passing
3) Function and procedure enrollment
4) Variable unification and ordering
5) Signal and register detection
6) Clock tree detection and dependencies
7) Register and signal dependencies
8) Design graph optimizations
9) C code dumping

Figure 1: Algorithm for RTL to C-model conversion.

After parsing the source code, the design hierarchy is elaborated. During this step, parameter must
be passed and generate statements must be considered. Step 3 covers the enrollment of functions,
tasks and procedures. For both coding languages (VHDL and Verilog) a variable unification and
ordering (step 4) within a single process must be done. After this initial phase, signals and registers
need to be identified (step 5). The register detection leads to the step of clock line elaboration for
each register. This information is then collected to group registers to individual clock domains and
the dependencies of the clock domains itself (e.g. internal generated clocks, step 6). The aspect of
using  a  sensitivity list  becomes  obsolete.  Instead  a  register  and signal  ordering  based on their
dependencies  takes  place  (step  7)  and the  resulting  desing  graph is  further  optimizes  (step  8).
Finally the design is dumped as C code (step 9).

The conversion algorithm (Figure 1) is common to most HDL-to-C translation tools. After parsing
and elaborating the design, the database models the design in a design language independent format.
In some alternative design flows, the design is already available in a C-model like fashion and the
conversion  and  mapping  steps  are  less  complex. From step  6  onwards,  the  different  language
specific aspects of the source code become irrelevant. The mapping of each RTL statement for the
Verilog and VHDL languages into C statements is listed in Table 1.
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Table 1. VHDL/Verilog syntax mapping
RTL VHDL Verilog C

if if the else … ? … : … / if else if () {} else {}
case case (sel) when case (sel) if () {} else {}

math a + b, -, *, …  a + b, -, *, … +, -, *, ...
comb not, and, or, … ~, &, |, … !, &, |, ...
unary &a, |a, ^a !, &, |, ...
mux a(i) a[i] a[i]

demux a(i) <= a[i] <= a[i]
shift shl, shr >>, << >>, <<

It is important for the execution speed, how the design is represented when simulated. Therefore the
steps 8 “Design graph optimization” and 9 “C code dumping” have a huge impact on the simulation
performance  of  the  C-model.  The  next  section  outlines  various  aspects  of  the  design  graph
optimization and modeling aspects. 

3. AOC C-Model Generation

The activity dependent,  ordered,  cycle accurate (AOC) C-model  generation is  discussed in this
section. To a certain extend, almost all alternative models are AOC models. Some values (registers)
are only calculated at a certain (clock) event (activity dependent), values must be calculated based
on an ordered list (otherwise it will get very complicated if not impossible) and almost all models
are cycle accurate. Nevertheless, different design representation aspects and different design graph
optimization methods can lead to different execution speeds. Numbers will be shown in the result
section. Figure 2 lists the various aspects which are discussed in this section.

1) N level signal modeling
2) Multidimensional types and type size
3) Direct computations vs. function calls
4) Design flattening and optimizations
5) Clock and output domain modeling
6) Register ordering
7) Wire ordering
8) Activity dependent signal ordering

Figure. 2: Design Graph Optimization Methods and Design Modeling Aspects 

3.1 Definitions

Given is a set of inputs I, outputs O, sequential elements R and a directed graph G of combinatorial
elements  C  and wires  W. The simplest form of a combinatorial element  c ϵ C is an assignment
(buffer). An c input (ci) can be an input i ϵ I, register r ϵ R or wire w ϵ W. A c output (co) can be an
output o ϵ O, register r ϵ R or wire w ϵ W. All w have one driving combinatorial element c. All c and
w build a directed graph without functional loops. A signal s ϵ S can be an i, o, r, or w ({I, O, R, W}
ϵ S). A register r can be an event or level sensitive sequential element. 

A cr ϵ CR is a clock root and CR a list of all cr of the design. A cd ϵ CD is a set of registers with
identical cr. CD is a list of all cd in the design. The register cone input list rcil(r) is register specific
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and is a complete list of register and input signals which drive the directed tree tr of combinatorial
elements (c) with (r) at its root. A primary input pi can be an input i or the output of a sequential
element r. A primary output po can be a register input r or an output o. All po with the same clock
root cr are grouped to a primary output domain pod(cr). The POD lists all pod(cr) of the design.

3.2 N-level Signal Modeling

For the optimization techniques discussed now, it is assumed that C variables of the standard type
“unsigned” generate  faster  execution  models  than  their  comparable  representation  as  a  specific
class. In the proposed AOC model generation, a 2-value representation of  s is therefore default,
unless specified otherwise. Assuming the signal s0 is an 8 bit wide bus and should only simulate {0,
1}, then s0 can be of type “unsigned”. If s0 should simulate more than 2 values {0, 1,  X, Z, ...},
then s0 must be represented by a specific signal-class. 

3.3 Multidimensional Types and Type Size

The  different  signal  types  are  elaborated  and  serialized.  Let  cw  be  the  bit  width  of  the  type
“unsigned”  of  the  target  architecture  for  the  model  execution.  A classical  cw  of  a  processor
architectures is 32 or 64. If (serialized) types have more than cw bits, then the C representation is a
two dimensional array of the serialized type. An exception to this rule is a 2-dimensional array type
with less than cw bits per dimension. In this case the type is also modeled as a “2-dimensional
unsigned array” but not serialized. If the signal must be modeled as a signal-class, then the class can
use a serialized or a dynamic representation.

3.4  Direct Computations vs. Function Calls

Each combinatorial element c should be modeled as a direct computation “a = b & c;” and not as a
function call “a = AND(b, c);”. If at lease one signal is a signal-class, then a function call “AND(a,
b, c);” is required. Functions must be provided to convert signals of type unsigned to or from a
signal-class.

3.5  Design Flattening and Optimizations

The design hierarchy is removed by flattening the design. Signal names are modified to guarantee
the uniqueness of  the signal.  For  a  better  readability (debugging),  the hierarchical  instantiation
names are typically added as a prefix to the signal name (e.g. topi_subsystem1i_cpui_executei_pc)
but any other method/prefix to uniquify the signals is applicable. 

The design builds a directed graph G of combinatorial elements  C and signals  S. Constant values
(e.g. a signal is driven by a constant value “s <= 1'b0;”) are propagated through G and all c ϵ C and
s ϵ  S that become irrelevant are removed. Also direct assignment pairs “s2 <= s1; s1 <= s0;” are
simplified “s2 <= s0;” and the irrelevant entries in the design database (c, s) are removed. Most of
these direct assignment pairs result from design flattening.

3.6 Clock and Output Domain Modeling

After the register identification step, the clock (or enable) input of each register (r) is traced back to
its clock root (cr). Clock roots (cr) can be inputs (i) to the design, outputs of combinatorial logic (w)
or  registers  (r).  The  clock  roots  which  are  design  inputs  become  independent  driver  of  their
individual clock domain (cd). Clock roots which are latch or register outputs or outputs of logic
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cones are drivers of clock domains, which dependent on other clock domains (cd). 

All  outputs  o ϵ  O  are automatically grouped to the output domain  OD  (=  O)  ϵ  POD. They are
independent of any clock (or enable) event and their value must be calculated whenever one of the
pi of their directed tree tr(o) has changed its value.

3.7 Register Ordering

The register list of each clock domain (cd) must be ordered, based on their interdependency. For
that the register cone input list (rcil(r)) is generated for each register. Figure 3 shows an example.

Figure 3: Simple Ordering and Ordering Using Split

The ordering of all r of one cd is trivial when their rcil(r) is used. The logic cones of Figure 3a can
easily be ordered and calculated. The registers of Figure 3b depend on each other and no clear order
can be found. At least one register must therefore be splitted into its output value and a pre-register
value that is calculated first. All relevant r then take over their pre-register value as an output value
at the end of the modeling task of a clock domain.

3.8 Wire Ordering

The directed tree  tr(po) for each primary output  po of a primary output domain  pod(cr) must be
modeled. A po can either be a  r or an  o. Therefore the modeling of all wires  w ϵ  tr(po) must be
ordered based on their interdependency. A w gets the attribute wcal once it has been added to the list
of calculated w WL. Then it can be defined, that the value of a w can be calculated when the inputs
of the associated combinatorial logic element c are r, pi, or wcal. This constraint allows an ordering
of all  w ϵ  tr(po). The  po value can be calculated when all  w ϵ  tr(po) are  wcal. Each  wcal holds its
attribute  until  all  po of  a  POD are  calculated.  Therefore each relevant  w of  a  pod(cr) is  only
calculated once.

3.9 Activity Dependent  Signal Ordering

An special modeling technique is the activity dependent signal ordering (ADSO). A combinatorial
element  c changes  its  output  value co only when  at  least  one  of  their  inputs  ci has  changed.
Classical HDLs like VHDL and Verilog support this fact by using a sensitivity list. Figure 4 shows
how ADSO is implemented in an AOC model.
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Figure 4: Implementing Activity Dependent Signal Ordering

The ADSO evaluation algorithm is based on two steps. In the first step, all outputs of combinatorial
elements co (= {w, r, po}) are placed on different levels l based on the following rules. Rule 1 says,
that each co must be placed on the lowest possible level. Rule 2 says, that a co which depends on a
list of ci (= {w, pi}) lci must be placed on a higher level than all w of lci. In the second step, all co
on a level l are grouped to signal groups sg(l) based on the following rule. Rule 3 says, that all co
on one l which depend on at least one identical wire w are grouped to a sg(l). The ordered signal list
OSL (dotted line in Figure 4) holds all sg(l) ordered by their individual level l assignment.

The ADSO execution algorithm adds the active attribute  sgact  to each sg. If a  ci changes its value
during execution, then the following is applied. Rule 4 says, that the sgact is set for the sg for which
one of the co has the ci.  All sg are evaluated based on the OSL. All co in an sg are only calculated,
if the sgact attribute is set. After the execution of an sg, the sgact attribute is cleared again.

4. Multithreaded Execution of AOC Models

When  an  AOC  model  should  be  executed  on  a  multithreaded  processor  (or  multiprocessor)
environment then the AODS algorithm must be enhanced by the following steps. In step 1, the
combinatorial  elements  c,  wires  w and  output  o of  the  output  domain  OD are  added  to  each
individual clock domain cd, which are connected to the po of this cd. The resulting clock domain is
then called cdo. In step 2, the elements of a cdo are partitioned to be executed on individual threads
td.  The  number  of  maximal  treads  tdmax must  be  defined.  Each  individual  po of  the  cdo is
uniquified  and an  individual  ordered  signal  list  OSL  is  generated.  Therefore,  cdo elements  are
duplicated if they are elements of individual  OSL. The  OSL must be then merged as long as the
number of OSL is greater than tdmax based on the following rule. Rule 5 says, that these two OSL
out of all  OSL are merged, which share the highest number of  cdo elements. Figure 5 shows an
example of 3 cdo and 2 td/OSL.
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Figure 5: Enhanced Model for Multithreaded Execution

The  memory  model  is  critical  for  the  program  performance,  especially  when  executed  on  a
multithreaded or multicore system. The “OpenCL Memory Model” [15] is shown in Figure 6. It is
used to demonstrate the memory usage of AOC models. Wires w do have a very short lifetime and
do  not  need  to  be  shared  among  multiple  threads.  They  are  therefore  stored  in  the  “Private
Memory” (Figure 6)  of  a  work-item (= thread).  Registers  r are  stored  throughout  the  program
runtime and most of them must be shared among multiple work-items. They are located in the
“Local  Memory”  (Figure  6)  of  a  workgroup and become primary inputs  pi in  the  next  cycle.
Outputs o are  calculated for each cycle  and stored in the “Constant  Memory”of  the “Compute
Device” (Figure 6). Inputs i are also stored in the “Constant Memory” to be used by the work-items
as pi.

Figure 6: OpenCL Memory Model of the Compute Device

In the proposed OSL based modeling technique, wires w only have a very short lifetime. Two steps
can be made to improve the execution speed. In step 1, the following observations and definitions
are made. The order of w calculation within one level can be freely selected. It is defined that a wire
pair wp has a first wire fw and a second wire sw, whereas the sw depends on the fw. The wp with the
fw and the sw on consecutive levels are added to a level specific wire pair list WPL(l). The wp of
which the fw is only used by the sw are listed last in the WPL(l). The following rule is defined to
keep the values of w in the register file of a processor during execution. Rule 6 says, that for each
wp of the ordered WPL(l) the fw is added at the end and the sw is added at the beginning of the w
calculation of each level. This increases the chances that the compiler avoids memory accesses and
keeps the temporary values of w in the register file. 
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In step 2, it is tried to avoid further time consuming memory access by reusing cache entries for
multiple wire calculations. To achieve this, a list of placeholders PHL and its maximal size (cache
size) phmax is defined. Rule 7 says, that a w is assigned to a PHL entry, if its value is used in the
remaining execution of the SGL. If the w is not needed anymore, than its PHL entry can be used by
another w. This rule and phmax must already be considered when two OSL are merged to a single
one (rule 5). Rule 7 can help the compiler to store values in a local cache. The parameters tdmax
and phmax are system specific.

Seven rules have been defined throughout the last two sections. They define the transformation
process of the device under test (DUT) - which can be seen as a  directed graph G defined in section
3.1 - into an activity-dependent, ordered and cycle-accurate (AOC) C-model.

5. Testbenches

This paper discussed so far how synthesizeable HDL code can be transformed into AOC C-models.
An  extended  flow  can  be  used  to  transfer  testbenches  (non-synthesize-able  code)  into  timing
accurate  representations  in  C++ format.  Both  models  can  then  be  linked  to  execute  the  same
simulation process as known from HDL simulators. 

The additional aspects of this flow are the DUT definition and the sequential process identification.
Sequential  processes  are  HDL  statements,  which  are  time  consuming  due  to  timing  related
statements (example: “wait for 10 ns;”) or conditional statements (example: “wait on <signal>;”).
These processes cannot be converted into cycle accurate models, they need to be modeled timing
accurate. The resulting model has an condition checker and an event scheduler. Both reflect the
entries of the sequential processes. The flow for this methodology is outlined in Figure 7. 

1)  parsing source code
2)  parameter passing and hierarchy
3)  function and procedure enrollment
4)  variable uniquification
5)  DUT definition
6)  sequential process identification
7)  signal and register detection
8)  clock tree detection and dependencies
9)  register and signal logic cone conversion
10) register and signal dependencies
11) C++ code optimization and dumping
12) condition bag dumping
13) event scheduler dumping

Figure 7: Algorithm for HDL Testbench to Timing Accurate Modeling

A process in VHDL or Verilog is defined as a time-consuming process (TCP) when it is not within
the DUT hierarchy and when the keyword “wait” is used within this process. A TCP is partitioned
into individual list of assignments, based on the different wait statement. A list of assignments is
continuously executed until a “wait” statement is reached. This event is added to the event list in
case of a “wait for” statement, and to a the condition list in case of a “wait on” statement. The
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execution of the assignment list of the TCP is continued, once the simulation time reaches the event
in the event list or when the condition in the condition list is true. The conditions in the condition
list are checked very simulation step.

6. PSL, Waveform and MatLab

6.1 PSL

The  property  specification  language  (PSL)  can  be  used  for  checking  design  behavior  during
verification. The language supports different flavors (VHDL, Verilog) and can be part of the design
RTL source code itself. The language is more and more used already on C/SystemC level or higher
level of abstraction as proposed by Habibi et al. in [16]. It is therefore important to incorporate the
structure into AOC C-models. Obereder et al.  describe in [17], how PSL can be converted into
synthesizable HDL code. This approach can be used and the resulting synthesizable HDL code can
be converted into AOC C-models.

6.2 Waveform

Just  like  common  HDL simulators,  AOC C-models  can  dump  simulation  waveforms  as  well.
Signals can be defined manually, by script or by HDL syntax (example: Verilog). The AOC C-
model then dumps a cycle accurate VCD file during execution, which can then be viewed by a
standard waveform viewer.

6.3 Running AOC C-Models in Matlab

AOC C-models can also be executed in a Matlab [18] based environment. For that the C code must
be  compiled  into  an  S-function.  It  can  then  be  co-simulated  together  with  other  Matlab  based
simulation components. This is very useful for accelerators or custom DSPs designed in HDL. They
can then be simulated and verified in a much more flexible simulation environment than classical
HDLs can offer.
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7. Results

This section compares the execution speed of AOC C-models to alternative concepts.  Different
testcases are used to measure the individual runtimes. The Verilog version of the OpenRISC SoC
was taken from [19] and a testcase was added. The verilator [7] and iverilog [8] runtime was then
compared to the runtime of the AOC C-model, which was automatically generated from the Verilog
source code. A single stage RISCV32IM processor [20] with a lengthy testcase was developed in
VHDL and SystemC. A Chisel version was taken from [21]. Their runtime was then compared to
the runtime of the AOC C-model, which was automatically generated from the VHDL source code.
A license for a standard simulator was not available. This is why a comparison number of verilator
vs. VCS was taken from [7] and added to the list as a VCS vs. AOC C-model relative runtime entry,
considering the fact, that the AOC C-mode is about 5.09 times faster than the verilator execution.
The numbers are based on tests executed on a single processor system. Table 2 and Figure 8 show
the results. The AOC C-models are always the 100% reference runtime. 

Table 2. Relative runtime compared to AOC C-models.
verilator iverilog GHDL SystemC Chisel VCS

Relative Runtime 5.09 18.39 11.44 7.00 3.91 20.6
AOC C-model 1 1 1 1 1 1

Figure 8: Relative runtime comparison of the AOC C-model and alternatives.

The  numbers  show that  the  AOC C-models  are  always  faster  than  any other  known C-model
(iverilog, ….) based  alternative. The compile time of the individual C-models are almost the same
and their comparison can be neglected. 

8. Conclusion

This paper introduced activity dependent cycle accurate (AOC) C-models. Multiple improvement
steps can be applied to successively decrease the execution time. The main improvements are the
activity  dependent  solving  of  combinatorial  logic  equations  and  their  execution  based  on  an
extracted signal order. Tests show that they have a faster execution speed than pure cycle accurate
C-models or HDL simulators. 

This paper also shows that the proposed AOC C-model fits nicely into a multiprocessor system .The
current  research  concentrates  on  generating  AOC  OpenCL-models  for  multiprocessor  or
multithreading processor systems.
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